Suppr超能文献

Deposition patterns of feruloylarabinoxylan during cell wall formation in moso bamboo.

机构信息

Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.

Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.

出版信息

Planta. 2022 Aug 19;256(3):59. doi: 10.1007/s00425-022-03970-8.

Abstract

The feruloylarabinoxylan deposition was initiated at the formation of the secondary cell wall, especially S layer in moso bamboo, which may affect crosslinking between cell wall components and plant growth. Hemicelluloses, major components of plant cell walls that are hydrogen bonded to cellulose and covalently bound to lignin, are crucial determinants of cell wall properties. Especially in commelinid monocotyledons, arabinoxylan is often esterified with ferulic acid, which is essential to crosslinking with cell wall components. However, the deposition patterns and localization of ferulic acid during cell wall formation remain unclear. In this study, developing moso bamboo (Phyllostachys pubescens) culms were used to elucidate deposition patterns of hemicelluloses including feruloylarabinoxylan. Ferulic acid content peaked with cessation of elongation growth, and thereafter decreased and remained stable as culm development proceeded. During primary cell wall (PCW) formation, xyloglucan and (1,3;1,4)-β-glucan signals were detected in all tissues. Along with culm development, arabinoxylan and feruloylarabinoxylan signals were sequentially observed in the protoxylem, vascular fibers and metaxylem, and parenchyma. Feruloylarabinoxylan signals were observed slightly later than arabinoxylan signals. Arabinoxylan signals were observed throughout the compound middle lamella and secondary cell wall (SCW), whereas the feruloylarabinoxylan signal was localized to the S layer of the SCW. These results indicate that the biosynthesis of hemicelluloses is regulated in accordance with cell wall layers. Feruloylarabinoxylan deposition may be initiated at the formation of SCW, especially S layer formation. Ferulic acid-mediated linkages of arabinoxylan-arabinoxylan and arabinoxylan-lignin would arise during SCW formation with the cessation of elongation growth.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验