Suppr超能文献

一种用于旋转机械开集故障诊断的多源加权深度迁移网络。

A Multi-Source Weighted Deep Transfer Network for Open-Set Fault Diagnosis of Rotary Machinery.

出版信息

IEEE Trans Cybern. 2023 Mar;53(3):1982-1993. doi: 10.1109/TCYB.2022.3195355. Epub 2023 Feb 15.

Abstract

In real industries, there often exist application scenarios where the target domain holds fault categories never observed in the source domain, which is an open-set domain adaptation (DA) diagnosis issue. Existing DA diagnosis methods under the assumption of sharing identical label space across domains fail to work. What is more, labeled samples can be collected from different sources, where multisource information fusion is rarely considered. To handle this issue, a multisource open-set DA diagnosis approach is developed. Specifically, multisource domain data of different operation conditions sharing partial classes are adopted to take advantage of fault information. Then, an open-set DA network is constructed to mitigate the domain gap across domains. Finally, a weighting learning strategy is introduced to adaptively weigh the importance on feature distribution alignment between known class and unknown class samples. Extensive experiments suggest that the proposed approach can substantially boost the performance of open-set diagnosis issues and outperform existing diagnosis approaches.

摘要

在实际工业中,经常存在目标域中存在源域中从未观察到的故障类别这一应用场景,这是一个开放集域自适应 (DA) 诊断问题。现有 DA 诊断方法假设在域之间共享相同的标签空间,因此无法正常工作。此外,标签样本可以从不同的来源收集,而很少考虑多源信息融合。为了解决这个问题,开发了一种多源开放集 DA 诊断方法。具体来说,采用不同运行条件的多源域数据共享部分类别,以利用故障信息。然后,构建一个开放集 DA 网络来减轻域之间的域差距。最后,引入加权学习策略,自适应地调整已知类和未知类样本之间特征分布对齐的重要性。大量实验表明,所提出的方法可以显著提高开放集诊断问题的性能,并优于现有的诊断方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验