Wallner Måns, Jarraya Mahmoud, Olsson Emelie, Ideböhn Veronica, Squibb Richard J, Ben Yaghlane Saida, Nyman Gunnar, Eland John H D, Feifel Raimund, Hochlaf Majdi
University of Gothenburg, Department of Physics, Origovägen 6B, 412 58 Gothenburg, Sweden.
Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, 2092 Tunis, Tunisia.
Sci Adv. 2022 Aug 19;8(33):eabq5411. doi: 10.1126/sciadv.abq5411.
Molecular oxygen, O, is vital to life on Earth and possibly also on exoplanets. Although the biogenic processes leading to its accumulation in Earth's atmosphere are well understood, its abiotic origin is still not fully established. Here, we report combined experimental and theoretical evidence for electronic state-selective production of O from SO, a chemical constituent of many planetary atmospheres and one that played an important part on Earth in the Great Oxidation Event. The O production involves dissociative double ionization of SO leading to efficient formation of the [Formula: see text] ion, which can be converted to abiotic O by electron neutralization or by charge exchange. This formation process may contribute substantially to the abundance of O and related ions in planetary atmospheres, such as the Jovian moons Io, Europa, and Ganymede. We suggest that this sort of ionic pathway for the formation of abiotic O involving multiply charged molecular ion decomposition may also exist for other atmospheric and planetary molecules.
分子氧(O₂)对地球上乃至系外行星上的生命至关重要。尽管导致其在地球大气中积累的生物过程已为人熟知,但其非生物起源仍未完全确定。在此,我们报告了关于从SO₂电子态选择性产生O₂的实验和理论相结合的证据,SO₂是许多行星大气的化学成分,并且在地球的大氧化事件中发挥了重要作用。O₂的产生涉及SO₂的解离双电离,从而高效形成[公式:见正文]离子,该离子可通过电子中和或电荷交换转化为非生物O₂。这种形成过程可能对行星大气中O₂和相关离子的丰度有很大贡献,比如木星的卫星木卫一、木卫二和木卫三。我们认为,这种涉及多电荷分子离子分解形成非生物O₂的离子途径可能也存在于其他大气和行星分子中。