Suppr超能文献

大氧化事件期间氧化作用的快速转变和大气中低氧的不稳定性。

Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O.

机构信息

Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195.

Virtual Planetary Laboratory, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2205618119. doi: 10.1073/pnas.2205618119. Epub 2022 Sep 6.

Abstract

The Great Oxidation Event (GOE), arguably the most important event to occur on Earth since the origin of life, marks the time when an oxygen-rich atmosphere first appeared. However, it is not known whether the change was abrupt and permanent or fitful and drawn out over tens or hundreds of millions of years. Here, we developed a one-dimensional time-dependent photochemical model to resolve time-dependent behavior of the chemically unstable transitional atmosphere as it responded to changes in biogenic forcing. When forced with step-wise changes in biogenic fluxes, transitions between anoxic and oxic atmospheres take between only 10 and 10 y. Results also suggest that O between [Formula: see text] and [Formula: see text] mixing ratio is unstable to plausible atmospheric perturbations. For example, when atmospheres with these O concentrations experience fractional variations in the surface CH flux comparable to those caused by modern Milankovich cycling, oxygen fluctuates between anoxic ([Formula: see text]) and oxic ([Formula: see text]) mixing ratios. Overall, our simulations are consistent with possible geologic evidence of unstable atmospheric O, after initial oxygenation, which could occasionally collapse from changes in biospheric or volcanic fluxes. Additionally, modeling favors mid-Proterozoic O exceeding [Formula: see text] to [Formula: see text] mixing ratio; otherwise, O would periodically fall below [Formula: see text] mixing ratio, which would be inconsistent with post-GOE absence of sulfur isotope mass-independent fractionation.

摘要

大氧化事件(GOE)可以说是自生命起源以来地球上最重要的事件,标志着含氧大气首次出现的时间。然而,目前还不清楚这种变化是突然的和永久性的,还是断断续续的,持续了数千万年甚至数亿年。在这里,我们开发了一个一维时变光化学反应模型,以解决化学不稳定的过渡大气对生物成因强迫变化的响应的时变行为。当受到生物成因通量的阶跃变化的强迫时,缺氧和富氧大气之间的转变只需要 10 到 10 年。结果还表明,[Formula: see text]和[Formula: see text]之间的 O 混合比对于大气的合理干扰是不稳定的。例如,当这些 O 浓度的大气经历与现代米兰科维奇旋回引起的类似的表面 CH 通量分数变化时,氧气在缺氧([Formula: see text])和富氧([Formula: see text])混合比之间波动。总的来说,我们的模拟与初始增氧后大气 O 不稳定的可能地质证据一致,这可能会因生物或火山通量的变化而偶尔崩溃。此外,模拟有利于中元古代 O 超过[Formula: see text]到[Formula: see text]的混合比;否则,O 将周期性地低于[Formula: see text]混合比,这与 GOE 后没有硫同位素质量独立分馏不一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268d/9477391/27697cda99de/pnas.2205618119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验