Suppr超能文献

一种用于甲状腺疾病多分类的多通道深度卷积神经网络。

A multi-channel deep convolutional neural network for multi-classifying thyroid diseases.

机构信息

Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Melbourne, VIC 3800, Australia.

Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Melbourne, VIC 3800, Australia.

出版信息

Comput Biol Med. 2022 Sep;148:105961. doi: 10.1016/j.compbiomed.2022.105961. Epub 2022 Aug 10.

Abstract

BACKGROUND AND OBJECTIVE

Thyroid disease instances have been continuously increasing since the 1990s, and thyroid cancer has become the most rapidly rising disease among all the malignancies in recent years. Most existing studies focused on applying deep convolutional neural networks for detecting thyroid cancer. Despite their satisfactory performance on binary classification tasks, limited studies have explored multi-class classification of thyroid disease types; much less is known of the diagnosis of co-existence situation for different types of thyroid diseases.

METHOD

This study proposed a novel multi-channel convolutional neural network (CNN) architecture to address the multi-class classification task of thyroid disease. The multi-channel CNN merits from computed tomography characteristics to drive a comprehensive diagnostic decision for the overall thyroid gland, emphasizing the disease co-existence circumstance. Moreover, this study also examined alternative strategies to enhance the diagnostic accuracy of CNN models through concatenation of different scales of feature maps.

RESULTS

Benchmarking experiments demonstrate the improved performance of the proposed multi-channel CNN architecture compared with the standard single-channel CNN architecture. More specifically, the multi-channel CNN achieved an accuracy of 0.909±0.048, precision of 0.944±0.062, recall of 0.896±0.047, specificity of 0.994±0.001, and F1 of 0.917±0.057, in contrast to the single-channel CNN, which obtained 0.902±0.004, 0.892±0.005, 0.909±0.002, 0.993±0.001, 0.898±0.003, respectively. In addition, the proposed model was evaluated in different gender groups; it reached a diagnostic accuracy of 0.908 for the female group and 0.901 for the male group.

CONCLUSION

Collectively, the results highlight that the proposed multi-channel CNN has excellent generalization and has the potential to be deployed to provide computational decision support in clinical settings.

摘要

背景与目的

自 20 世纪 90 年代以来,甲状腺疾病的病例不断增加,甲状腺癌已成为近年来所有恶性肿瘤中增长最快的疾病。大多数现有研究都集中在应用深度卷积神经网络来检测甲状腺癌。尽管它们在二分类任务上表现出色,但很少有研究探索甲状腺疾病类型的多分类;对于不同类型的甲状腺疾病共存情况的诊断知之甚少。

方法

本研究提出了一种新的多通道卷积神经网络(CNN)架构,以解决甲状腺疾病的多分类任务。多通道 CNN 从计算机断层扫描的特征中获益,为整个甲状腺提供全面的诊断决策,强调疾病共存情况。此外,本研究还通过不同尺度特征图的串联来检验增强 CNN 模型诊断准确性的替代策略。

结果

基准实验表明,与标准的单通道 CNN 架构相比,所提出的多通道 CNN 架构的性能得到了提高。具体来说,多通道 CNN 的准确率为 0.909±0.048,精确率为 0.944±0.062,召回率为 0.896±0.047,特异性为 0.994±0.001,F1 值为 0.917±0.057,而单通道 CNN 的准确率为 0.902±0.004,精确率为 0.892±0.005,召回率为 0.909±0.002,特异性为 0.993±0.001,F1 值为 0.898±0.003。此外,还在不同的性别组中评估了所提出的模型,它在女性组中的诊断准确率为 0.908,在男性组中的诊断准确率为 0.901。

结论

总体而言,研究结果表明,所提出的多通道 CNN 具有出色的泛化能力,有潜力在临床环境中部署,提供计算决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验