Suppr超能文献

甲状腺疾病诊断的综合框架:整合先进的特征选择、遗传算法和机器学习以提高准确性及其他性能指标。

Comprehensive framework for thyroid disorder diagnosis: Integrating advanced feature selection, genetic algorithms, and machine learning for enhanced accuracy and other performance matrices.

作者信息

Kumar Ankur, Dhanka Sanjay, Sharma Abhinav, Sharma Anchal, Maini Surita, Fahlevi Mochammad, Rabby Fazla, Aljuaid Mohammed, Bansal Rohit

机构信息

SCEE, IIT Mandi, Mandi, Himachal Pradesh, India.

Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.

出版信息

PLoS One. 2025 Jun 18;20(6):e0325900. doi: 10.1371/journal.pone.0325900. eCollection 2025.

Abstract

Thyroid hormones control crucial physiological activities, such as metabolism, oxidative stress, erythropoiesis, thermoregulation, and organ development. Hormonal imbalances may cause serious conditions like cognitive impairment, depression, and nervous system damage. Traditional diagnostic techniques, based on hormone level measurements (TSH, T3, FT4, T4, and FTI), are usually lengthy and laborious. This study uses machine learning (ML) algorithms and feature selection based on GA to improve the accuracy and efficiency of diagnosing thyroid disorders using the UCI thyroid dataset. Five ML algorithms-LR, RF, SVM, AB, and DT- were tested using two paradigms: (1) default classifiers and (2) hybrid GA-ML models- GA-RF, GA-LR, GA-SVM, GA-DT, and GA-AB. The data pre-processed included handling missing values, feature scaling, and correlation analysis. In this case, the performance metrics used for model evaluation are accuracy, F1 Score, sensitivity, specificity, precision, and Cohen's Kappa with 80% of the dataset to train the model and the rest 20% used to test it. Among the non-hybrid models, RF achieved the highest accuracy, which was 93.93%. The hybrid GA-RF model outperformed all others, achieving a remarkable accuracy of 97.21%, along with superior metrics across all the evaluated parameters. These findings highlight the diagnostic potential of the GA-RF model in providing faster, more accurate, and reliable thyroid disorder detection. The research illustrated the potential of the hybrid GA-ML approaches to improving the clinical diagnostic process while proposing a strong and scalable approach towards thyroid disorder identification.

摘要

甲状腺激素控制着关键的生理活动,如新陈代谢、氧化应激、红细胞生成、体温调节和器官发育。激素失衡可能导致严重的病症,如认知障碍、抑郁症和神经系统损伤。基于激素水平测量(促甲状腺激素、三碘甲状腺原氨酸、游离甲状腺素、甲状腺素和游离甲状腺素指数)的传统诊断技术通常耗时且费力。本研究使用机器学习(ML)算法和基于遗传算法(GA)的特征选择,以提高使用UCI甲状腺数据集诊断甲状腺疾病的准确性和效率。使用两种范式测试了五种ML算法——逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、自适应增强(AB)和决策树(DT):(1)默认分类器和(2)混合GA-ML模型——GA-RF、GA-LR、GA-SVM、GA-DT和GA-AB。预处理的数据包括处理缺失值、特征缩放和相关性分析。在这种情况下,用于模型评估的性能指标是准确率、F1分数、灵敏度、特异性、精确率和科恩卡方系数,其中80%的数据集用于训练模型,其余20%用于测试模型。在非混合模型中,RF的准确率最高,为93.93%。混合GA-RF模型的表现优于所有其他模型,准确率达到了97.21%,在所有评估参数上的指标也更优。这些发现凸显了GA-RF模型在提供更快、更准确和可靠的甲状腺疾病检测方面的诊断潜力。该研究说明了混合GA-ML方法在改善临床诊断过程方面的潜力,同时提出了一种强大且可扩展的甲状腺疾病识别方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89d/12176113/c7a7a351ac7d/pone.0325900.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验