School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
Department of Radiology, Tangdu Hospital Air Force Medical University, Xi'an, People's Republic of China.
J Neural Eng. 2022 Sep 6;19(5). doi: 10.1088/1741-2552/ac8b39.
Current autism clinical detection relies on doctor observation and filling of clinical scales, which is subjective and prone to misdetection. Existing autism research of functional magnetic resonance imaging (fMRI) over-compresses the time-scale information and has poor generalization ability. This study extracts multiple time scale brain features of fMRI, providing objective detection.. We first use least absolute shrinkage and selection operator to build a sparse network and extract features with a time scale of 1. Then, we use hidden markov model to extract features that describe the dynamic changes of the brain, with a time scale of 2. Additionally, to analyze the features of the potential network activity of autism from a higher time scale, we use long short-term memory to construct an auto-encoder to re-encode the original data and extract the features at a higher time scale, with a time scale of, andis the time length of fMRI. We use recursive feature elimination for feature selection for three different time scale features, merge them into multiple time scale features, and finally use one-dimensional convolution neural network for classification.. Compared with well-established models, our method has achieved better results. The accuracy of our method is 76.0%, and the area under the roc curve is 0.83, tested on completely independent data, so our method has better generalization ability.. This research analyzes fMRI sequences from multiple time scale to detect autism, and it also provides a new framework and research ideas for subsequent fMRI analysis.
当前的自闭症临床检测依赖于医生的观察和临床量表的填写,这是主观的,容易出现误检。现有的功能磁共振成像(fMRI)自闭症研究过度压缩了时间尺度信息,泛化能力较差。本研究从功能磁共振成像中提取多个时间尺度的脑特征,提供客观的检测。我们首先使用最小绝对值收缩和选择算子构建稀疏网络,并提取具有 1 个时间尺度的特征。然后,我们使用隐马尔可夫模型提取描述大脑动态变化的特征,具有 2 个时间尺度。此外,为了从更高的时间尺度分析自闭症潜在网络活动的特征,我们使用长短期记忆构建自编码器对原始数据进行重新编码,并提取更高时间尺度的特征,具有 个时间尺度, 是 fMRI 的时间长度。我们使用递归特征消除对三种不同时间尺度特征进行特征选择,将它们合并为多个时间尺度特征,最后使用一维卷积神经网络进行分类。与成熟的模型相比,我们的方法取得了更好的结果。我们的方法的准确率为 76.0%,ROC 曲线下面积为 0.83,在完全独立的数据上进行了测试,因此我们的方法具有更好的泛化能力。本研究从多个时间尺度分析功能磁共振成像序列以检测自闭症,为后续的功能磁共振成像分析提供了新的框架和研究思路。