Suppr超能文献

使用结构和功能磁共振成像检测 ADHD 和自闭症的一般预测模型。

A general prediction model for the detection of ADHD and Autism using structural and functional MRI.

机构信息

Department of Computing Science, University of Alberta, Edmonton, AB, Canada.

Alberta Machine Intelligence Institute, AB, Canada.

出版信息

PLoS One. 2018 Apr 17;13(4):e0194856. doi: 10.1371/journal.pone.0194856. eCollection 2018.

Abstract

This work presents a novel method for learning a model that can diagnose Attention Deficit Hyperactivity Disorder (ADHD), as well as Autism, using structural texture and functional connectivity features obtained from 3-dimensional structural magnetic resonance imaging (MRI) and 4-dimensional resting-state functional magnetic resonance imaging (fMRI) scans of subjects. We explore a series of three learners: (1) The LeFMS learner first extracts features from the structural MRI images using the texture-based filters produced by a sparse autoencoder. These filters are then convolved with the original MRI image using an unsupervised convolutional network. The resulting features are used as input to a linear support vector machine (SVM) classifier. (2) The LeFMF learner produces a diagnostic model by first computing spatial non-stationary independent components of the fMRI scans, which it uses to decompose each subject's fMRI scan into the time courses of these common spatial components. These features can then be used with a learner by themselves or in combination with other features to produce the model. Regardless of which approach is used, the final set of features are input to a linear support vector machine (SVM) classifier. (3) Finally, the overall LeFMSF learner uses the combined features obtained from the two feature extraction processes in (1) and (2) above as input to an SVM classifier, achieving an accuracy of 0.673 on the ADHD-200 holdout data and 0.643 on the ABIDE holdout data. Both of these results, obtained with the same LeFMSF framework, are the best known, over all hold-out accuracies on these datasets when only using imaging data-exceeding previously-published results by 0.012 for ADHD and 0.042 for Autism. Our results show that combining multi-modal features can yield good classification accuracy for diagnosis of ADHD and Autism, which is an important step towards computer-aided diagnosis of these psychiatric diseases and perhaps others as well.

摘要

这项工作提出了一种新的方法,用于学习一种能够使用从 3D 结构磁共振成像(MRI)和 4D 静息状态功能磁共振成像(fMRI)扫描中获取的结构纹理和功能连接特征来诊断注意力缺陷多动障碍(ADHD)和自闭症的模型。我们探索了一系列三个学习者:(1)LeFMS 学习者首先使用稀疏自动编码器生成的基于纹理的滤波器从结构 MRI 图像中提取特征。然后,这些滤波器使用无监督卷积网络与原始 MRI 图像卷积。由此产生的特征用作线性支持向量机(SVM)分类器的输入。(2)LeFMF 学习者通过首先计算 fMRI 扫描的空间非平稳独立成分来生成诊断模型,然后使用这些成分来将每个受试者的 fMRI 扫描分解为这些共同空间成分的时间过程。然后可以单独使用这些特征或与其他特征结合使用来生成模型。无论使用哪种方法,最终的特征集都将输入到线性支持向量机(SVM)分类器中。(3)最后,总体 LeFMSF 学习者将从上述(1)和(2)中的两个特征提取过程中获得的组合特征作为输入输入到 SVM 分类器中,在 ADHD-200 保留数据上达到 0.673 的准确率和 ABIDE 保留数据上的 0.643。这两个结果都是在使用相同的 LeFMSF 框架获得的,在仅使用成像数据时,这些结果在这些数据集上的所有保留准确率都是最高的,对于 ADHD 提高了 0.012,对于自闭症提高了 0.042。我们的结果表明,组合多模态特征可以为 ADHD 和自闭症的诊断提供良好的分类准确性,这是朝着这些精神疾病以及其他疾病的计算机辅助诊断迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea3/5903601/75675cff4735/pone.0194856.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验