Suppr超能文献

在机械和渗透加载条件下溶质传输的三维全耦合水力学-力学-化学模型。

Three-dimensional fully coupled hydro-mechanical-chemical model for solute transport under mechanical and osmotic loading conditions.

机构信息

Geoenvironmental Research Centre, Cardiff University, Cardiff, CF24 3AA, UK.

Key Laboratory of Urban Security & Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing, 100124, People's Republic of China.

出版信息

Environ Sci Pollut Res Int. 2023 Jan;30(3):5983-6000. doi: 10.1007/s11356-022-22600-0. Epub 2022 Aug 20.

Abstract

Mechanical deformation and chemico-osmotic consolidation of clay liners can change its intrinsic transport properties in all direction and can alter fluid and solute transport processes in the entire model domain. These phenomena are described inadequately by lower-dimensional models. Based on the Biot's consolidation theory, fluid and solute mass conservation equations, a three-dimensional (3D) fully-coupled hydro-mechanical-chemical (HMC) model has been proposed in this study. The impacts of mechanical consolidation and chemico-osmotic consolidation on permeability, hydrodynamic dispersion, solute sorption, membrane efficiency, and chemical osmosis are considered in the model. The model is applied to evaluate performances of a single compacted clay liner (CCL) and a damaged geomembrane-compacted clay composite liner (GMB/CCL) to contain a generic landfill contaminant. Effect of model dimensionality on solute spread for CCL is found to be marginal, but for GMB/CCL the effect is significantly large. After 50-year simulation period, solute concentration at the half-length of the GMB/CCL liner is predicted to be 40% of the source concentration during 1D simulation, which is only 6% during the 3D simulation. The results revealed approximately 74% over-estimation of liner settlement in 1D simulation than that of the 3D for GMB/CL system. Solute spread accelerates (over-estimates) vertically than horizontally since overburden load and consequent mechanical loading-induced solute convection occurs in the same direction. However, in homogeneous and isotropic soils, horizontal spread retards the overall migration of contaminants, and it highlights the importance of 3D models to study solute transports under mechanical and chemico-osmotic loading conditions in semi-permeable clays, especially, for damaged geomembrane-clay liners. The results show the utility of geomembranes to reduce soil settlement, undulation, and restriction of solute migration. Furthermore, application of geomembrane can inhibit development of elevated negative excess pore water pressure at deeper portion of a clay liner.

摘要

机械变形和化学渗透固结会改变粘土衬垫的各向同性传输特性,并改变整个模型域中的流体和溶质传输过程。这些现象用低维模型描述是不充分的。基于比奥固结理论、流体和溶质质量守恒方程,本研究提出了一个三维(3D)完全耦合水力学-机械-化学(HMC)模型。该模型考虑了机械固结和化学渗透固结对渗透性、水动力弥散、溶质吸附、膜效率和化学渗透的影响。该模型用于评估单个压实粘土衬垫(CCL)和受损土工膜-压实粘土复合衬垫(GMB/CCL)容纳通用垃圾填埋场污染物的性能。发现模型维度对 CCL 中溶质扩展的影响可以忽略不计,但对 GMB/CCL 的影响非常大。在 50 年的模拟期后,预测 GMB/CCL 衬垫半长度处的溶质浓度在 1D 模拟期间将是源浓度的 40%,而在 3D 模拟期间仅为 6%。结果表明,与 3D 相比,GMB/CL 系统中 1D 模拟的衬垫沉降高估了约 74%。由于上覆荷载和由此产生的机械加载诱导的溶质对流发生在同一方向上,因此溶质的垂直扩展速度(高估)快于水平扩展速度。然而,在均匀各向同性土壤中,水平扩展会阻碍污染物的整体迁移,这凸显了在半渗透粘土中研究机械和化学渗透加载条件下溶质传输时使用 3D 模型的重要性,尤其是对于受损的土工膜-粘土衬垫。结果表明,土工膜可减少土壤沉降、起伏和溶质迁移的限制。此外,土工膜的应用可以抑制粘土衬垫深部负压超孔隙水压力的升高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e5/9894985/0da51402e393/11356_2022_22600_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验