Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
Metab Eng. 2022 Sep;73:235-246. doi: 10.1016/j.ymben.2022.08.008. Epub 2022 Aug 17.
Microbial cell factories offer a promising strategy for the sustainable production of industrial chemicals from renewable biomass feedstock. However, their performance is often limited by poor microbial cell viability (MCV). Here, MCV was engineered to enhance chemical production by optimizing the regulation of lifespan-specific genes to reduce the accumulation of reactive oxygen species (ROS). In Escherichia coli, MCV was improved by reducing ROS accumulation using second codon engineering to regulate hypoxia-inducible transcription factor (arcA), resulting in lysine production up to 213 g L with its productivity 5.90 g L·h. In Saccharomyces cerevisiae, MCV was increased by decreasing ROS accumulation using second codon engineering to fine-tune ceramide synthase (lag1), leading to glucaric acid production up to 9.50 g L with its productivity 0.057 g L·h. These results demonstrate that engineering MCV is a potential strategy to boost the performance of microbial cell factories in industrial processes.
微生物细胞工厂为利用可再生生物质原料可持续生产工业化学品提供了一种很有前途的策略。然而,其性能往往受到微生物细胞活力(MCV)差的限制。在这里,通过优化寿命特异性基因的调控来减少活性氧(ROS)的积累,从而提高 MCV 以增强化学品的生产。在大肠杆菌中,通过使用第二密码子工程减少 ROS 积累来调节缺氧诱导转录因子(arcA),使赖氨酸产量达到 213g/L,生产力达到 5.90g/L·h。在酿酒酵母中,通过使用第二密码子工程减少 ROS 积累来微调神经酰胺合酶(lag1),使葡萄糖二酸的产量达到 9.50g/L,生产力达到 0.057g/L·h。这些结果表明,工程化 MCV 是提高工业过程中微生物细胞工厂性能的一种潜在策略。