Suppr超能文献

靶向甲基化和羟化过程中的辅助因子再生以实现阿魏酸的高产。

Targeting cofactors regeneration in methylation and hydroxylation for high level production of Ferulic acid.

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.

出版信息

Metab Eng. 2022 Sep;73:247-255. doi: 10.1016/j.ymben.2022.08.007. Epub 2022 Aug 18.

Abstract

Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E. coli by using endogenous genes to supply sufficient methyl donor. Then, a small protein Fre is introduced into the pathway to efficiently regenerate FADH for the hydroxylation. Remarkably, regeneration of these two cofactors dramatically promotes FA synthesis. Together with decreasing the byproducts formation and boosting precursor supply, the titer of FA reaches 5.09 g/L under fed-batch conditions, indicating a 20-fold improvement compared with the original producing E. coli strain. This work not only establishes a promising microbial platform for industrial level production of FA and its derivatives, but also highlights a convenient and effective strategy to enhance the biosynthesis of chemicals requiring methylation and FADH-dependent hydroxylation.

摘要

阿魏酸(FA)是一种天然的甲基化酚酸,具有多种生物活性。FA 的生物生产受到甲基供体补充不足和羟化效率低下的限制。为了克服这些障碍,我们首先利用内源基因激活大肠杆菌中的 S-腺苷甲硫氨酸(SAM)循环,以提供足够的甲基供体。然后,引入一种小蛋白 Fre 到途径中,以有效地为羟化再生 FADH。值得注意的是,这两种辅助因子的再生极大地促进了 FA 的合成。通过减少副产物的形成和提高前体的供应,在补料分批条件下,FA 的产量达到 5.09 g/L,与原始生产大肠杆菌菌株相比提高了 20 倍。这项工作不仅为 FA 及其衍生物的工业水平生产建立了一个有前途的微生物平台,而且还突出了一种方便有效的策略,可增强需要甲基化和 FADH 依赖性羟化的化学品的生物合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验