Suppr超能文献

使用机器学习进行健康经济学和结果研究的范围综述:第 2 部分——来自非可穿戴设备的数据。

A Scoping Review of the Use of Machine Learning in Health Economics and Outcomes Research: Part 2-Data From Nonwearables.

机构信息

The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA.

The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA, USA.

出版信息

Value Health. 2022 Dec;25(12):2053-2061. doi: 10.1016/j.jval.2022.07.011. Epub 2022 Aug 18.

Abstract

OBJECTIVES

Despite the increasing interest in applying machine learning (ML) methods in health economics and outcomes research (HEOR), stakeholders face uncertainties in when and how ML can be used. We reviewed the recent applications of ML in HEOR.

METHODS

We searched PubMed for studies published between January 2020 and March 2021 and randomly chose 20% of the identified studies for the sake of manageability. Studies that were in HEOR and applied an ML technique were included. Studies related to wearable devices were excluded. We abstracted information on the ML applications, data types, and ML methods and analyzed it using descriptive statistics.

RESULTS

We retrieved 805 articles, of which 161 (20%) were randomly chosen. Ninety-two of the random sample met the eligibility criteria. We found that ML was primarily used for predicting future events (86%) rather than current events (14%). The most common response variables were clinical events or disease incidence (42%) and treatment outcomes (22%). ML was less used to predict economic outcomes such as health resource utilization (16%) or costs (3%). Although electronic medical records (35%) were frequently used for model development, claims data were used less frequently (9%). Tree-based methods (eg, random forests and boosting) were the most commonly used ML methods (31%).

CONCLUSIONS

The use of ML techniques in HEOR is growing rapidly, but there remain opportunities to apply them to predict economic outcomes, especially using claims databases, which could inform the development of cost-effectiveness models.

摘要

目的

尽管机器学习(ML)方法在健康经济学和结果研究(HEOR)中的应用日益受到关注,但利益相关者在何时以及如何使用 ML 方面仍存在不确定性。我们回顾了最近 ML 在 HEOR 中的应用。

方法

我们在 PubMed 上搜索了 2020 年 1 月至 2021 年 3 月期间发表的研究,并随机选择了已识别研究的 20%作为研究对象,以方便管理。纳入了在 HEOR 中应用 ML 技术的研究。排除了与可穿戴设备相关的研究。我们提取了关于 ML 应用、数据类型和 ML 方法的信息,并使用描述性统计进行了分析。

结果

我们共检索到 805 篇文章,其中随机抽取了 161 篇(20%)。随机样本中有 92 篇符合入选标准。我们发现,ML 主要用于预测未来事件(86%),而不是当前事件(14%)。最常见的因变量是临床事件或疾病发生率(42%)和治疗结果(22%)。ML 用于预测健康资源利用(16%)或成本(3%)等经济结果的情况较少。虽然电子病历(35%)常用于模型开发,但使用索赔数据的情况较少(9%)。基于树的方法(例如随机森林和提升法)是最常用的 ML 方法(31%)。

结论

ML 技术在 HEOR 中的应用正在迅速增长,但仍有机会将其应用于预测经济结果,特别是使用索赔数据库,这可以为成本效益模型的开发提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验