文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 KNN 算法的电子商务产品精准营销。

Precise Marketing of E-Commerce Products Based on KNN Algorithm.

机构信息

Guangzhou College of Technology and Business, Guangzhou, China.

出版信息

Comput Intell Neurosci. 2022 Aug 11;2022:4966439. doi: 10.1155/2022/4966439. eCollection 2022.


DOI:10.1155/2022/4966439
PMID:35990135
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9388237/
Abstract

In order to better understand the purchase decision-making process of consumers, this paper makes an in-depth study on the precision marketing of e-commerce products on the basis of KNN algorithm. Through data mining, classic KNN algorithm, BPNN algorithm, and other methods, this paper takes the price and purchase intention of e-commerce agricultural products as an example. Based on the classic nearest neighbor algorithm, binomial function is combined with Euclidean distance formula when calculating the nearest neighbor through similarity. The particle swarm optimization algorithm is used to optimize the binomial function coefficient and the value of the nearest neighbor algorithm, and the results of the best prediction model for the prediction application of e-commerce agricultural product price and purchase intention are established. Both pricing strategies and promotion strategies will weaken the compromise effect of consumers when they choose e-commerce agricultural products. After studying the calculation method of the KNN algorithm, it not only correctly predicts the price of e-commerce agricultural products but also makes a corresponding prediction and analysis of consumers' purchase intention of e-commerce agricultural products, with the highest accuracy of 94.2%. At the same time, in the future precision marketing process, e-commerce agricultural products enterprises use data technology to achieve precision marketing, which effectively changes the shortcomings of traditional marketing and improves the product marketing effect and economic benefits.

摘要

为了更好地理解消费者的购买决策过程,本文在 KNN 算法的基础上,对电子商务产品的精准营销进行了深入研究。通过数据挖掘、经典 KNN 算法、BPNN 算法等方法,本文以电子商务农产品的价格和购买意愿为例,在经典最近邻算法的基础上,在通过相似度计算最近邻时,将二项式函数与欧几里得距离公式相结合。采用粒子群优化算法对二项式函数系数和最近邻算法的 值进行优化,建立电子商务农产品价格和购买意愿预测应用的最佳预测模型的结果。定价策略和促销策略都会削弱消费者在选择电子商务农产品时的妥协效应。在研究了 KNN 算法的计算方法之后,它不仅正确地预测了电子商务农产品的价格,而且对消费者对电子商务农产品的购买意愿做出了相应的预测和分析,准确率高达 94.2%。同时,在未来的精准营销过程中,电子商务农产品企业利用数据技术实现精准营销,有效改变了传统营销的弊端,提高了产品营销效果和经济效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/15b981dd9db8/CIN2022-4966439.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/5375689528df/CIN2022-4966439.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/713598ef06b3/CIN2022-4966439.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/48c3c7fb6a76/CIN2022-4966439.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/7ecbeadfbe63/CIN2022-4966439.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/6dcd7fa1824f/CIN2022-4966439.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/b5bb24f7ab06/CIN2022-4966439.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/15b981dd9db8/CIN2022-4966439.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/5375689528df/CIN2022-4966439.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/713598ef06b3/CIN2022-4966439.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/48c3c7fb6a76/CIN2022-4966439.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/7ecbeadfbe63/CIN2022-4966439.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/6dcd7fa1824f/CIN2022-4966439.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/b5bb24f7ab06/CIN2022-4966439.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ccb/9388237/15b981dd9db8/CIN2022-4966439.007.jpg

相似文献

[1]
Precise Marketing of E-Commerce Products Based on KNN Algorithm.

Comput Intell Neurosci. 2022

[2]
Effect of emotional factors on purchase intention in live streaming marketing of agricultural products: A moderated mediation model.

PLoS One. 2024

[3]
E-Commerce Marketing Optimization of Agricultural Products Based on Deep Learning and Data Mining.

Comput Intell Neurosci. 2022

[4]
Exploring the influence of live streaming on consumer purchase intention: A structural equation modeling approach in the Chinese E-commerce sector.

Acta Psychol (Amst). 2024-9

[5]
The influence of consumer perception on purchase intention: Evidence from cross-border E-commerce platforms.

Heliyon. 2023-10-27

[6]
A Study on the Influencing Factors of Consumers' Purchase Intention During Livestreaming e-Commerce: The Mediating Effect of Emotion.

Front Psychol. 2022-5-9

[7]
Study of Consumers' Purchase Intentions on Community E-commerce Platform with the SOR Model: A Case Study of China's "Xiaohongshu" App.

Behav Sci (Basel). 2023-1-26

[8]
An improved deep forest model for prediction of e-commerce consumers' repurchase behavior.

PLoS One. 2021

[9]
Examining the influence of information overload on consumers' purchase in live streaming: A heuristic-systematic model perspective.

PLoS One. 2023

[10]
Consumers' Decision-Making Process on Social Commerce Platforms: Online Trust, Perceived Risk, and Purchase Intentions.

Front Psychol. 2020-5-15

本文引用的文献

[1]
Cold-hot nature identification based on GC similarity analysis of Chinese herbal medicine ingredients.

RSC Adv. 2021-7-27

[2]
A Social-aware and Mobile Computing-based E-Commerce Product Recommendation System.

Comput Intell Neurosci. 2022

[3]
Application of Data Mining in the Analysis of Martial Arts Athlete Competition Skills and Tactics.

J Healthc Eng. 2021

[4]
Diabetes Risk Data Mining Method Based on Electronic Medical Record Analysis.

J Healthc Eng. 2021

[5]
Heartbeat Classification Based on Multifeature Combination and Stacking-DWKNN Algorithm.

J Healthc Eng. 2021

[6]
Multiclass Classification of Hepatic Anomalies with Dielectric Properties: From Phantom Materials to Rat Hepatic Tissues.

Sensors (Basel). 2020-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索