Suppr超能文献

通过移位可变处理减少光子饥饿伪影

Photon Starvation Artifact Reduction by Shift-Variant Processing.

作者信息

Zeng Gengsheng L

机构信息

Department of Computer Science, Utah Valley University, Orem, UT 84058, USA.

Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108, USA.

出版信息

IEEE Access. 2022;10:13633-13649. doi: 10.1109/access.2022.3142775. Epub 2022 Jan 20.

Abstract

The x-ray computed tomography (CT) images with low dose are noisy and may contain photon starvation artifacts. The artifacts are location and direction dependent. Therefore, the common shift-invariant denoising filters do not work well. The state-of-the-art methods to process the low-dose CT images are image reconstruction based; they require the raw projection data. In many situations, the raw CT projections are not accessible. This paper suggests a method to denoise the low-dose CT image using the pseudo projections generated by the application of a forward projector on the low-dose CT image. The feasibility of the proposed method is demonstrated by real clinical data.

摘要

低剂量的X射线计算机断层扫描(CT)图像有噪声,并且可能包含光子饥饿伪影。这些伪影与位置和方向有关。因此,常见的平移不变去噪滤波器效果不佳。处理低剂量CT图像的最新方法是基于图像重建的;它们需要原始投影数据。在许多情况下,无法获取原始CT投影。本文提出一种方法,使用在前向投影器应用于低剂量CT图像时生成的伪投影对低剂量CT图像进行去噪。通过实际临床数据证明了所提方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/9390879/50711269d648/nihms-1778356-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验