Suppr超能文献

基于卷积神经网络的低剂量CT

Low-dose CT via convolutional neural network.

作者信息

Chen Hu, Zhang Yi, Zhang Weihua, Liao Peixi, Li Ke, Zhou Jiliu, Wang Ge

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China; National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.

Abstract

In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods.

摘要

为了降低潜在的辐射风险,低剂量CT已引起越来越多的关注。然而,简单地降低辐射剂量会显著降低图像质量。在本文中,我们提出了一种新的通过深度学习进行低剂量CT降噪的方法,无需访问原始投影数据。这里使用一个深度卷积神经网络以逐块的方式将低剂量CT图像映射到其对应的正常剂量图像。定性结果表明该方法在减少伪影和保留结构方面具有巨大潜力。在定量指标方面,与现有的竞争方法相比,该方法在峰值信噪比(PSNR)、均方根误差(RMSE)和结构相似性指数(SSIM)上有显著提高。此外,我们的方法速度比迭代重建和基于块的图像去噪方法快一个数量级。

相似文献

1
Low-dose CT via convolutional neural network.
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.
2
Probabilistic self-learning framework for low-dose CT denoising.
Med Phys. 2021 May;48(5):2258-2270. doi: 10.1002/mp.14796. Epub 2021 Mar 17.
3
Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
Med Phys. 2024 Feb;51(2):1289-1312. doi: 10.1002/mp.16331. Epub 2023 Mar 10.
4
Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
Vis Comput Ind Biomed Art. 2021 Jul 25;4(1):21. doi: 10.1186/s42492-021-00087-9.
5
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.
6
Structure-preserving low-dose computed tomography image denoising using a deep residual adaptive global context attention network.
Quant Imaging Med Surg. 2023 Oct 1;13(10):6528-6545. doi: 10.21037/qims-23-194. Epub 2023 Sep 14.
7
A novel denoising method for CT images based on U-net and multi-attention.
Comput Biol Med. 2023 Jan;152:106387. doi: 10.1016/j.compbiomed.2022.106387. Epub 2022 Dec 1.
8
STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
Med Phys. 2023 Jul;50(7):4443-4458. doi: 10.1002/mp.16249. Epub 2023 Feb 9.
9
Dose reduction and image enhancement in micro-CT using deep learning.
Med Phys. 2023 Sep;50(9):5643-5656. doi: 10.1002/mp.16385. Epub 2023 Apr 5.
10
Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
Int J Comput Assist Radiol Surg. 2020 Feb;15(2):193-201. doi: 10.1007/s11548-019-02082-1. Epub 2019 Oct 31.

引用本文的文献

2
A Quantum Denoising-Based Resolution Enhancement Framework for 250-MHz and 500-MHz Quantitative Acoustic Microscopy.
IEEE Trans Comput Imaging. 2024;10:1489-1504. doi: 10.1109/tci.2024.3473312. Epub 2024 Oct 3.
6
Enhancing 3-D Radio Frequency Data in Quantitative Acoustic Microscopy Using Quantum-Driven Prior at 250 MHz and 500 MHz.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 Aug;72(8):1119-1133. doi: 10.1109/TUFFC.2025.3576239.
7
UR-cycleGAN: Denoising full-body low-dose PET images using cycle-consistent Generative Adversarial Networks.
J Appl Clin Med Phys. 2025 Jul;26(7):e70124. doi: 10.1002/acm2.70124. Epub 2025 Jun 2.
8
Artificial Intelligence for Neuroimaging in Pediatric Cancer.
Cancers (Basel). 2025 Feb 12;17(4):622. doi: 10.3390/cancers17040622.
9
10
Multi-stage deep learning artifact reduction for parallel-beam computed tomography.
J Synchrotron Radiat. 2025 Mar 1;32(Pt 2):442-456. doi: 10.1107/S1600577525000359. Epub 2025 Feb 17.

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
2
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
4
Statistical iterative reconstruction using adaptive fractional order regularization.
Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.
6
Non-Local Auto-Encoder With Collaborative Stabilization for Image Restoration.
IEEE Trans Image Process. 2016 May;25(5):2117-29. doi: 10.1109/TIP.2016.2541318. Epub 2016 Mar 11.
7
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331. doi: 10.1109/TMI.2016.2532122. Epub 2016 Feb 18.
8
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images.
IEEE Trans Med Imaging. 2016 May;35(5):1196-1206. doi: 10.1109/TMI.2016.2525803. Epub 2016 Feb 4.
9
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
10
Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation.
IEEE Trans Pattern Anal Mach Intell. 2014 Jun;36(6):1134-48. doi: 10.1109/TPAMI.2013.167.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验