Suppr超能文献

基于卷积神经网络的低剂量CT

Low-dose CT via convolutional neural network.

作者信息

Chen Hu, Zhang Yi, Zhang Weihua, Liao Peixi, Li Ke, Zhou Jiliu, Wang Ge

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China; National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China.

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.

Abstract

In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods.

摘要

为了降低潜在的辐射风险,低剂量CT已引起越来越多的关注。然而,简单地降低辐射剂量会显著降低图像质量。在本文中,我们提出了一种新的通过深度学习进行低剂量CT降噪的方法,无需访问原始投影数据。这里使用一个深度卷积神经网络以逐块的方式将低剂量CT图像映射到其对应的正常剂量图像。定性结果表明该方法在减少伪影和保留结构方面具有巨大潜力。在定量指标方面,与现有的竞争方法相比,该方法在峰值信噪比(PSNR)、均方根误差(RMSE)和结构相似性指数(SSIM)上有显著提高。此外,我们的方法速度比迭代重建和基于块的图像去噪方法快一个数量级。

相似文献

1
Low-dose CT via convolutional neural network.基于卷积神经网络的低剂量CT
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.
10

引用本文的文献

本文引用的文献

1
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
2
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.基于图像稀疏性和光谱均值的光谱CT重建
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
4
Statistical iterative reconstruction using adaptive fractional order regularization.使用自适应分数阶正则化的统计迭代重建
Biomed Opt Express. 2016 Feb 24;7(3):1015-29. doi: 10.1364/BOE.7.001015. eCollection 2016 Mar 1.
6
Non-Local Auto-Encoder With Collaborative Stabilization for Image Restoration.基于协同稳定的非局部自动编码器图像恢复。
IEEE Trans Image Process. 2016 May;25(5):2117-29. doi: 10.1109/TIP.2016.2541318. Epub 2016 Mar 11.
9
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验