Lei Ziying, Zhang Jing, Mueller Emily A, Xiao Yao, Kolozsvari Katherine R, McNeil Anne J, Banaszak Holl Mark M, Ault Andrew P
Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria 3800, Australia.
Anal Chem. 2022 Sep 6;94(35):11973-11977. doi: 10.1021/acs.analchem.2c01979. Epub 2022 Aug 22.
The phase (solid, semisolid, or liquid) of atmospheric aerosols is central to their ability to take up water or undergo heterogeneous reactions. In recent years, the unexpected prevalence of viscous organic particles has been shown through field measurements and global atmospheric modeling. The aerosol phase has been predicted using glass transition temperatures (), which were estimated based on molecular weight, oxygen:carbon ratio, and chemical formulae of organic species present in atmospheric particles via studies of bulk materials. However, at the most important sizes for cloud nucleation (∼50-500 nm), particles are complex mixtures of numerous organic species, inorganic salts, and water with substantial particle-to-particle variability. To date, direct measurements of have not been feasible for individual atmospheric particles. Herein, nanothermal analysis (NanoTA), which uses a resistively heated atomic force microscopy (AFM) probe, is combined with AFM photothermal infrared (AFM-PTIR) spectroscopy to determine the and composition of individual particles down to 76 nm in diameter at ambient temperature and pressure. Laboratory-generated proxies for organic aerosol (sucrose, ouabain, raffinose, and maltoheptaose) had similar values to bulk values measured with differential scanning calorimetry (DSC) and the predictions used in atmospheric models. Laboratory-generated phase-separated particles and ambient particles were analyzed with NanoTA + AFM-PTIR showing intraparticle variation in composition and . These results demonstrate the potential for NanoTA + AFM-PTIR to increase our understanding of viscosity within submicrometer atmospheric particles with complex phases, morphologies, and compositions, which will enable improved modeling of aerosol impacts on clouds and climate.
大气气溶胶的相态(固态、半固态或液态)对于其吸水能力或发生非均相反应的能力至关重要。近年来,通过实地测量和全球大气模型已表明粘性有机颗粒意外普遍存在。气溶胶相态已通过玻璃化转变温度()进行预测,该温度是通过对块状材料的研究,基于大气颗粒中存在的有机物种的分子量、氧碳比和化学式估算得出的。然而,在对云核形成最重要的尺寸(约50 - 500纳米)下,颗粒是由众多有机物种、无机盐和水组成的复杂混合物,颗粒与颗粒之间存在显著差异。迄今为止,对于单个大气颗粒直接测量尚未可行。在此,使用电阻加热原子力显微镜(AFM)探针的纳米热分析(NanoTA)与AFM光热红外(AFM - PTIR)光谱相结合,以在环境温度和压力下确定直径低至76纳米的单个颗粒的 和组成。实验室生成的有机气溶胶替代物(蔗糖、哇巴因、棉子糖和麦芽七糖)具有与用差示扫描量热法(DSC)测量的块状 值以及大气模型中使用的 预测值相似的 值。使用NanoTA + AFM - PTIR对实验室生成的相分离颗粒和环境颗粒进行分析,结果显示颗粒内部在组成和 方面存在变化。这些结果证明了NanoTA + AFM - PTIR在增强我们对具有复杂相态、形态和组成的亚微米大气颗粒内粘度理解方面的潜力,这将有助于改进气溶胶对云和气候影响的模型。