Suppr超能文献

原子力显微镜-大气气溶胶单颗粒的红外光谱:亚衍射极限振动光谱和形貌分析。

Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis.

机构信息

Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.

Department of Environmental Health Sciences, University of Michigan , Ann Arbor, Michigan 48109, United States.

出版信息

Anal Chem. 2017 Sep 5;89(17):8594-8598. doi: 10.1021/acs.analchem.7b02381. Epub 2017 Aug 21.

Abstract

Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid-liquid phase separated particles (core-shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a ∼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity.

摘要

大气气溶胶的化学分析是一项具有挑战性的分析工作,因为气溶胶粒子是复杂的化学混合物,在大气中最丰富的尺寸(约 100nm)下,其体积中可能含有数百到数千种物质。这些粒子对气候和健康有着全球性的影响,但目前可用的方法很少能够将成像与来自振动光谱的详细分子信息结合起来,用于研究小于 500nm 的单个粒子。在此,我们首次展示了原子力显微镜与红外光谱(AFM-IR)相结合的应用,用于检测痕量有机和无机物种,并探测单个粒子中颗粒内的化学变化,最小可达 150nm。通过在可调节激光吸收 IR 光子的频率下检测光热膨胀,AFM-IR 可以研究小于光衍射极限的粒子。将 AFM(常压、高度、形貌和相位测量)的优势与光热红外光谱相结合,展示了 AFM-IR 在各种单一组分粒子、液-液分相粒子(核壳形貌)和环境大气粒子中的应用潜力。来自大气模型系统(硫酸铵、硝酸钠、琥珀酸和蔗糖)的光谱具有可识别的特征,与红外活性模式的吸收频率相关。此外,对于具有约 150nm 壳和 300nm 核的分相粒子,通过<100nm 的空间分辨率获得了分子信息。AFM-IR 的亚衍射极限能力有可能通过提高研究水吸收、多相反应性和粘度的分析能力,从而促进对粒子对气候和健康影响的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验