Suppr超能文献

事半功倍:植物表型分析中的多任务深度学习方法

Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping.

作者信息

Dobrescu Andrei, Giuffrida Mario Valerio, Tsaftaris Sotirios A

机构信息

IDCOM, University of Edinburgh, Edinburgh, United Kingdom.

School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom.

出版信息

Front Plant Sci. 2020 Feb 28;11:141. doi: 10.3389/fpls.2020.00141. eCollection 2020.

Abstract

Image-based plant phenotyping has been steadily growing and this has steeply increased the need for more efficient image analysis techniques capable of evaluating multiple plant traits. Deep learning has shown its potential in a multitude of visual tasks in plant phenotyping, such as segmentation and counting. Here, we show how different phenotyping traits can be extracted simultaneously from plant images, using multitask learning (MTL). MTL leverages information contained in the training images of related tasks to improve overall generalization and learns models with fewer labels. We present a multitask deep learning framework for plant phenotyping, able to infer three traits simultaneously: (i) leaf count, (ii) projected leaf area (PLA), and (iii) genotype classification. We adopted a modified pretrained ResNet50 as a feature extractor, trained end-to-end to predict multiple traits. We also leverage MTL to show that through learning from more easily obtainable annotations (such as PLA and genotype) we can predict a better leaf count (harder to obtain annotation). We evaluate our findings on several publicly available datasets of top-view images of . Experimental results show that the proposed MTL method improves the leaf count mean squared error (MSE) by more than 40%, compared to a single task network on the same dataset. We also show that our MTL framework can be trained with up to 75% fewer leaf count annotations without significantly impacting performance, whereas a single task model shows a steady decline when fewer annotations are available. Code available at https://github.com/andobrescu/Multi_task_plant_phenotyping.

摘要

基于图像的植物表型分析一直在稳步发展,这急剧增加了对能够评估多种植物性状的更高效图像分析技术的需求。深度学习已在植物表型分析的众多视觉任务中展现出其潜力,例如分割和计数。在此,我们展示了如何使用多任务学习(MTL)从植物图像中同时提取不同的表型性状。MTL利用相关任务训练图像中包含的信息来提高整体泛化能力,并学习标签更少的模型。我们提出了一个用于植物表型分析的多任务深度学习框架,能够同时推断三个性状:(i)叶片计数,(ii)投影叶面积(PLA),以及(iii)基因型分类。我们采用了经过修改的预训练ResNet50作为特征提取器,进行端到端训练以预测多个性状。我们还利用MTL表明,通过从更容易获得的注释(如PLA和基因型)中学习,我们可以预测出更好的叶片计数(更难获得注释)。我们在几个公开可用的顶视图图像数据集上评估了我们的发现。实验结果表明,与同一数据集上的单任务网络相比,所提出的MTL方法将叶片计数均方误差(MSE)提高了40%以上。我们还表明,我们的MTL框架在叶片计数注释减少多达75%的情况下仍可训练,且不会显著影响性能,而单任务模型在注释较少时性能会稳步下降。代码可在https://github.com/andobrescu/Multi_task_plant_phenotyping获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d3b/7093010/93e78e455d65/fpls-11-00141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验