Suppr超能文献

基于全基因组鉴定基因,实现玉米基于基因的杂种优势预测,可跨越环境和群体准确预测杂种父母本的杂种表现。

Genome-wide identification of genes enabling accurate prediction of hybrid performance from parents across environments and populations for gene-based breeding in maize.

机构信息

Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA.

Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

出版信息

Plant Sci. 2022 Nov;324:111424. doi: 10.1016/j.plantsci.2022.111424. Epub 2022 Aug 20.

Abstract

Accurate prediction of hybrid offspring complex trait phenotype from parents is paramount to enhanced plant breeding, animal breeding, and human medicine. Here we report genome-wide identification of genes enabling accurate prediction of hybrid offspring complex traits from parents using maize grain yield as the target trait. We identified 181 ZmF1GY genes enabling prediction of maize (Zea mays L.) F hybrid grain yield from parents and tested their utility and efficiency for predicting F hybrid grain yields from parents using their expressions, genic SNPs, and number of favorable alleles (NFAs), respectively. The ZmF1GY genes predicted hybrid grain yields from parents at an accuracy of 0.86, presented by correlation coefficient between predicted and observed phenotypes, within an environment, 0.74 across environments, and 0.64 across populations, outperforming genomic prediction by 27-406%, 23%, and 40%, respectively. Furthermore, we identified nine of the ZmF1GY genes containing SNPs or InDels in parents that increased or decreased hybrid grain yields by 14-46%. When the NFAs of these nine ZmF1GY genes were used for hybrid grain yield prediction from parents, they predicted hybrid grain yields at an accuracy of 0.79, outperforming genomic prediction by 21% that was based on up to tens of thousands of genome-wide SNPs. These results demonstrate the feasibility of developing a gene toolkit for a species enabling gene-based breeding across environments and populations that is much more powerful and efficient than current breeding, thereby helping secure the world's food production. The methodology is applicable to all crops, livestock, and humans.

摘要

准确预测杂种后代的复杂表型是增强植物育种、动物育种和人类医学的关键。在这里,我们报告了使用玉米籽粒产量作为目标性状,从父母本中准确预测杂种后代复杂性状的全基因组基因鉴定。我们鉴定了 181 个 ZmF1GY 基因,这些基因能够预测玉米(Zea mays L.)F1 杂种的籽粒产量。我们分别使用这些基因的表达、基因 SNP 和有利等位基因(NFA)的数量来测试它们预测 F1 杂种的籽粒产量的有效性和效率。ZmF1GY 基因在一个环境中预测杂种的籽粒产量的准确率为 0.86,表现为预测表型与观察表型之间的相关系数,在多个环境中预测杂种的籽粒产量的准确率为 0.74,在多个群体中预测杂种的籽粒产量的准确率为 0.64,分别比基因组预测高出 27-406%、23%和 40%。此外,我们鉴定了 9 个 ZmF1GY 基因的父母本中含有 SNP 或 InDels,这些 SNP 或 InDels 增加或减少了 14-46%的杂种的籽粒产量。当使用这 9 个 ZmF1GY 基因的 NFA 进行亲本的杂种产量预测时,它们预测杂种产量的准确率为 0.79,比基于多达数万的全基因组 SNP 的基因组预测高出 21%。这些结果表明,为一个物种开发一个基于基因的工具箱来进行跨环境和群体的基因育种是可行的,这种方法比目前的育种方法更加强大和高效,从而有助于确保全球的粮食生产。这种方法适用于所有的作物、牲畜和人类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验