Suppr超能文献

在热带玉米(Zea mays L.)中,结合全高光谱和标记数据,估算在热旱胁迫下的籽粒产量的生理基因组估计育种值(PGEBV)。

Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.).

机构信息

International Maize and Wheat Improvement Center (CIMMYT), Global Maize Program, Texcoco, Edo de Mex, Mexico.

International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Ciudad Obregon, Sonora, Mexico.

出版信息

PLoS One. 2019 Mar 20;14(3):e0212200. doi: 10.1371/journal.pone.0212200. eCollection 2019.

Abstract

High throughput phenotyping technologies are lagging behind modern marker technology impairing the use of secondary traits to increase genetic gains in plant breeding. We aimed to assess whether the combined use of hyperspectral data with modern marker technology could be used to improve across location pre-harvest yield predictions using different statistical models. A maize bi-parental doubled haploid (DH) population derived from F1, which consisted of 97 lines was evaluated in testcross combination under heat stress as well as combined heat and drought stress during the 2014 and 2016 summer season in Ciudad Obregon, Sonora, Mexico (27°20" N, 109°54" W, 38 m asl). Full hyperspectral data, indicative of crop physiological processes at the canopy level, was repeatedly measured throughout the grain filling period and related to grain yield. Partial least squares regression (PLSR), random forest (RF), ridge regression (RR) and Bayesian ridge regression (BayesB) were used to assess prediction accuracies on grain yield within (two-fold cross-validation) and across environments (leave-one-environment-out-cross-validation) using molecular markers (M), hyperspectral data (H) and the combination of both (HM). Highest prediction accuracy for grain yield averaged across within and across location predictions (rGP) were obtained for BayesB followed by RR, RF and PLSR. The combined use of hyperspectral and molecular marker data as input factor on average had higher predictions for grain yield than hyperspectral data or molecular marker data alone. The highest prediction accuracy for grain yield across environments was measured for BayesB when molecular marker data and hyperspectral data were used as input factors, while the highest within environment prediction was obtained when BayesB was used in combination with hyperspectral data. It is discussed how the combined use of hyperspectral data with molecular marker technology could be used to introduce physiological genomic estimated breeding values (PGEBV) as a pre-harvest decision support tool to select genetically superior lines.

摘要

高通量表型技术落后于现代标记技术,这削弱了利用次生性状来提高植物育种的遗传增益的能力。我们旨在评估是否可以将高光谱数据与现代标记技术结合使用,以改善不同统计模型下跨地点的收获前产量预测。利用来自 F1 的玉米双单倍体(DH)群体,该群体由 97 个系组成,在 2014 年和 2016 年夏季,在墨西哥索诺拉州奥布雷贡市(27°20'N,109°54'W,38 m asl)的热胁迫以及热干旱胁迫下的测验交组合中进行了评估。在整个灌浆期内,反复测量了完整的高光谱数据,这些数据代表了冠层水平的作物生理过程,并与籽粒产量相关。偏最小二乘回归(PLSR)、随机森林(RF)、岭回归(RR)和贝叶斯岭回归(BayesB)用于评估基于分子标记(M)、高光谱数据(H)和两者组合(HM)的籽粒产量在内部(两重交叉验证)和跨环境(单环境外交叉验证)的预测精度。跨内和跨位置预测的平均籽粒产量(rGP)的最高预测精度是贝叶斯岭回归,其次是 RR、RF 和 PLSR。与单独使用高光谱数据或分子标记数据相比,平均而言,将高光谱和分子标记数据组合作为输入因子可提高籽粒产量的预测。当使用分子标记数据和高光谱数据作为输入因子时,跨环境的籽粒产量预测精度最高,而当贝叶斯岭回归与高光谱数据结合使用时,内部环境的预测精度最高。讨论了如何将高光谱数据与分子标记技术结合使用,作为一种收获前决策支持工具,引入生理基因组估计育种值(PGEBV),以选择遗传上优越的系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验