Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
Med Mycol. 2022 Sep 6;60(9). doi: 10.1093/mmy/myac065.
Invasive fungal infections are increasingly common and carry high morbidity and mortality, yet fungal diagnostics lag behind bacterial diagnostics in rapidly identifying the causal pathogen. We previously devised a fluorescent hybridization-based assay to identify bacteria within hours directly from blood culture bottles without subculture, called phylogeny-informed rRNA-based strain identification (Phirst-ID). Here, we adapt this approach to unambiguously identify 11 common pathogenic Candida species, including C. auris, with 100% accuracy from laboratory culture (33 of 33 strains in a reference panel, plus 33 of 33 additional isolates tested in a validation panel). In a pilot study on 62 consecutive positive clinical blood cultures from two hospitals that showed yeast on Gram stain, Candida Phirst-ID matched the clinical laboratory result for 58 of 59 specimens represented in the 11-species reference panel, without misclassifying the 3 off-panel species. It also detected mixed Candida species in 2 of these 62 specimens, including the one discordant classification, that were not identified by standard clinical microbiology workflows; in each case the presence of both species was validated by both clinical and experimental data. Finally, in three specimens that grew both bacteria and yeast, we paired our prior bacterial probeset with this new Candida probeset to detect both pathogen types using Phirst-ID. This simple, robust assay can provide accurate Candida identification within hours directly from blood culture bottles, and the conceptual approach holds promise for pan-microbial identification in a single workflow.
Candida bloodstream infections cause considerable morbidity and mortality, yet slow diagnostics delay recognition, worsening patient outcomes. We develop and validate a novel molecular approach to accurately identify Candida species directly from blood culture one day faster than standard workflows.
侵袭性真菌感染越来越常见,且具有较高的发病率和死亡率,但真菌诊断在快速识别致病病原体方面落后于细菌诊断。我们之前设计了一种基于荧光杂交的检测方法,可以在不进行培养的情况下,直接在血液培养瓶中快速识别细菌,该方法称为基于系统发育的 rRNA 菌株鉴定(Phirst-ID)。在这里,我们对该方法进行了改进,使其能够以 100%的准确度从实验室培养物中明确鉴定出 11 种常见的致病性念珠菌,包括 C. auris,这一准确度在参考面板中的 33 株参考菌株和验证面板中另外 33 株额外分离株中均得到验证。在一项来自两家医院的 62 例连续阳性临床血培养的试点研究中,这些血培养物在革兰氏染色中显示有酵母,在 11 种念珠菌参考面板中,59 个样本中有 58 个的 Candida Phirst-ID 与临床实验室结果相匹配,没有错误分类 3 个不在面板内的种属。它还在这 62 个样本中的 2 个样本中检测到混合念珠菌种属,其中包括一个不一致的分类,这在标准的临床微生物学工作流程中无法识别;在每种情况下,临床和实验数据都验证了这两种种属的存在。最后,在 3 个同时培养出细菌和酵母的标本中,我们用之前的细菌探针组和新的念珠菌探针组配对,使用 Phirst-ID 来检测两种病原体类型。这种简单、稳健的检测方法可以在血液培养瓶中直接在 1 天内提供准确的念珠菌鉴定,这种概念性方法有望在单个工作流程中实现对多种微生物的鉴定。
念珠菌血流感染会导致严重的发病率和死亡率,但缓慢的诊断会延迟识别,从而使患者的预后恶化。我们开发并验证了一种新的分子方法,可以比标准工作流程快一天直接从血液培养瓶中准确识别念珠菌种属。