Tien Nai-Wen, Vitale Carmela, Badea Tudor C, Kerschensteiner Daniel
Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110.
Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110.
J Neurosci. 2022 Sep 21;42(38):7213-7221. doi: 10.1523/JNEUROSCI.2332-21.2022.
The mouse retina encodes diverse visual features in the spike trains of >40 retinal ganglion cell (RGC) types. Each RGC type innervates a specific subset of the >50 retinorecipient brain areas. Our catalog of RGC types and feature representations is nearing completion. Yet, we know little about where specific RGC types send their information. Furthermore, the developmental strategies by which RGC axons choose their targets and pattern their terminal arbors remain obscure. Here, we identify a genetic intersection ( and ) that selectively labels transient Suppressed-by-Contrast (tSbC) RGCs, a member of an evolutionarily conserved functionally mysterious RGC subclass. We find that tSbC RGCs selectively innervate the dorsolateral geniculate nucleus (dLGN) and ventrolateral geniculate nucleus (vLGN) of the thalamus, the superior colliculus (SC), and the nucleus of the optic tract (NOT) in mice of either sex. They binocularly innervate dLGN and vLGN but project only contralaterally to SC and NOT. In each target, tSbC RGC axons occupy a specific sublayer, suggesting that they restrict their input to specific circuits. The tSbC RGC axons span the length of the optic tract by birth and remain poised there until they simultaneously innervate their four targets around postnatal day 3. The tSbC RGC axons choose the right targets and establish mature stratification patterns from the outset. This precision is maintained in the absence of Brn3c. Our results provide the first map of SbC inputs to the brain, revealing a narrow target set, unexpected laminar organization, target-specific binocularity, and developmental precision. In recent years, we have learned a lot about the visual features encoded by RGCs, the output neurons of the eye. In contrast, we know little about where RGCs send their information and how RGC axons, which carry this information, target specific brain areas during development. Here, we develop an intersectional strategy to label a unique RGC type, the tSbC RGC, and map its projections. We find that tSbC RGC axons are highly selective. They innervate few retinal targets and restrict their arbors to specific sublayers within these targets. The selective tSbC RGC projection patterns develop synchronously and without trial and error, suggesting molecular determinism and coordination.
小鼠视网膜在40多种视网膜神经节细胞(RGC)类型的脉冲序列中编码多种视觉特征。每种RGC类型支配超过50个视网膜接受脑区中的特定子集。我们的RGC类型和特征表示目录已接近完成。然而,我们对特定RGC类型将信息发送到何处知之甚少。此外,RGC轴突选择其靶标并形成其终末分支的发育策略仍然不清楚。在这里,我们确定了一个基因交集(和),它选择性地标记瞬时对比度抑制(tSbC)RGC,这是一个进化上保守但功能神秘的RGC亚类的成员。我们发现,tSbC RGC选择性地支配丘脑的背外侧膝状核(dLGN)和腹外侧膝状核(vLGN)、上丘(SC)和视束核(NOT),无论雌雄小鼠均如此。它们双眼支配dLGN和vLGN,但仅向对侧投射到SC和NOT。在每个靶标中,tSbC RGC轴突占据特定的亚层,这表明它们将输入限制在特定的回路中。tSbC RGC轴突在出生时跨越视束的长度,并一直停留在那里,直到它们在出生后第3天左右同时支配其四个靶标。tSbC RGC轴突从一开始就选择正确的靶标并建立成熟的分层模式。在没有Brn3c的情况下,这种精确性得以维持。我们的结果提供了第一张SbC输入到大脑的图谱,揭示了一个狭窄的靶标集、意想不到的层状组织、靶标特异性双眼性和发育精确性。近年来,我们对作为眼睛输出神经元的RGC编码的视觉特征有了很多了解。相比之下,我们对RGC将信息发送到何处以及携带此信息的RGC轴突在发育过程中如何靶向特定脑区知之甚少。在这里,我们开发了一种交集策略来标记一种独特的RGC类型,即tSbC RGC,并绘制其投射图谱。我们发现tSbC RGC轴突具有高度选择性。它们支配很少的视网膜靶标,并将其分支限制在这些靶标内的特定亚层。选择性的tSbC RGC投射模式同步发展且无需试错,这表明存在分子决定论和协调性。