Burg Max F, Zenkel Thomas, Vystrčilová Michaela, Oesterle Jonathan, Höfling Larissa, Willeke Konstantin F, Lause Jan, Müller Sarah, Fahey Paul G, Ding Zhiwei, Restivo Kelli, Sridhar Shashwat, Gollisch Tim, Berens Philipp, Tolias Andreas S, Euler Thomas, Bethge Matthias, Ecker Alexander S
International Max Planck Research School for Intelligent Systems, Tübingen, Germany.
Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Germany.
ArXiv. 2024 Mar 14:arXiv:2401.05342v2.
Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selected stimuli, but this requires expert domain knowledge and biases the procedure towards previously known cell types. In the visual cortex, it is still unknown what functional types exist and how to identify them. Thus, for unbiased identification of the functional cell types in retina and visual cortex, new approaches are needed. Here we propose an optimization-based clustering approach using deep predictive models to obtain functional clusters of neurons using Most Discriminative Stimuli (MDS). Our approach alternates between stimulus optimization with cluster reassignment akin to an expectation-maximization algorithm. The algorithm recovers functional clusters in mouse retina, marmoset retina and macaque visual area V4. This demonstrates that our approach can successfully find discriminative stimuli across species, stages of the visual system and recording techniques. The resulting most discriminative stimuli can be used to assign functional cell types fast and on the fly, without the need to train complex predictive models or show a large natural scene dataset, paving the way for experiments that were previously limited by experimental time. Crucially, MDS are interpretable: they visualize the distinctive stimulus patterns that most unambiguously identify a specific type of neuron.
识别细胞类型并了解其功能特性对于揭示感知和认知背后的机制至关重要。在视网膜中,可以通过精心选择的刺激来识别功能类型,但这需要专业领域知识,并且会使该过程偏向于先前已知的细胞类型。在视觉皮层中,仍然不清楚存在哪些功能类型以及如何识别它们。因此,为了无偏见地识别视网膜和视觉皮层中的功能细胞类型,需要新的方法。在这里,我们提出了一种基于优化的聚类方法,使用深度预测模型,通过最具辨别力的刺激(MDS)来获得神经元的功能聚类。我们的方法类似于期望最大化算法,在刺激优化和聚类重新分配之间交替进行。该算法在小鼠视网膜、狨猴视网膜和猕猴视觉区域V4中恢复了功能聚类。这表明我们的方法可以成功地在不同物种、视觉系统阶段和记录技术中找到有辨别力的刺激。由此产生的最具辨别力的刺激可用于快速即时地分配功能细胞类型,而无需训练复杂的预测模型或展示大量自然场景数据集,为以前受实验时间限制的实验铺平了道路。至关重要的是,MDS是可解释的:它们可视化了最明确识别特定类型神经元的独特刺激模式。