Suppr超能文献

评估贝叶斯和频率派方法在纵向建模中的表现:在阿尔茨海默病中的应用。

Evaluating the performance of Bayesian and frequentist approaches for longitudinal modeling: application to Alzheimer's disease.

机构信息

Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, 08036, Barcelona, Spain.

Institute of Neurosciences. Department of Biomedicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, 08036, Barcelona, Spain.

出版信息

Sci Rep. 2022 Aug 24;12(1):14448. doi: 10.1038/s41598-022-18129-4.

Abstract

Linear mixed effects (LME) modelling under both frequentist and Bayesian frameworks can be used to study longitudinal trajectories. We studied the performance of both frameworks on different dataset configurations using hippocampal volumes from longitudinal MRI data across groups-healthy controls (HC), mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients, including subjects that converted from MCI to AD. We started from a big database of 1250 subjects from the Alzheimer's disease neuroimaging initiative (ADNI), and we created different reduced datasets simulating real-life situations using a random-removal permutation-based approach. The number of subjects needed to differentiate groups and to detect conversion to AD was 147 and 115 respectively. The Bayesian approach allowed estimating the LME model even with very sparse databases, with high number of missing points, which was not possible with the frequentist approach. Our results indicate that the frequentist approach is computationally simpler, but it fails in modelling data with high number of missing values.

摘要

线性混合效应(LME)模型可以在频率论和贝叶斯框架下进行,用于研究纵向轨迹。我们使用来自跨越健康对照组(HC)、轻度认知障碍(MCI)和阿尔茨海默病(AD)患者的纵向 MRI 数据的海马体体积,研究了这两种框架在不同数据集配置下的性能,包括从 MCI 转化为 AD 的患者。我们从阿尔茨海默病神经影像学倡议(ADNI)的一个大型数据库开始,对 1250 名受试者进行了研究,然后使用基于随机删除的排列方法创建了不同的简化数据集,模拟现实情况。需要 147 名和 115 名受试者来区分组和检测向 AD 的转化。贝叶斯方法允许估计 LME 模型,即使在非常稀疏的数据库中,具有大量缺失值的情况下,这在频率论方法中是不可能的。我们的结果表明,频率论方法在计算上更简单,但在处理大量缺失值的数据时会失败。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c8/9402558/769e09fd2217/41598_2022_18129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验