Suppr超能文献

用于医学图像分割的人机协作

HUMAN-MACHINE COLLABORATION FOR MEDICAL IMAGE SEGMENTATION.

作者信息

Ravanbakhsh Mahdyar, Tschernezki Vadim, Last Felix, Klein Tassilo, Batmanghelich Kayhan, Tresp Volker, Nabi Moin

机构信息

TU- Berlin.

SAP ML Research.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:1040-1044. doi: 10.1109/ICASSP40776.2020.9053555. Epub 2020 May 14.

Abstract

Image segmentation is a ubiquitous step in almost any medical image study. Deep learning-based approaches achieve state-of-the-art in the majority of image segmentation benchmarks. However, end-to-end training of such models requires sufficient annotation. In this paper, we propose a method based on conditional Generative Adversarial Network (cGAN) to address segmentation in semi-supervised setup and in a human-in-the-loop fashion. More specifically, we use the generator in the GAN to synthesize segmentations on unlabeled data and use the discriminator to identify unreliable slices for which expert annotation is required. The quantitative results on a conventional standard benchmark show that our method is comparable with the state-of-the-art fully supervised methods in slice-level evaluation, despite of requiring far less annotated data.

摘要

图像分割几乎是任何医学图像研究中都普遍存在的一个步骤。基于深度学习的方法在大多数图像分割基准测试中都达到了当前的先进水平。然而,此类模型的端到端训练需要足够的标注。在本文中,我们提出了一种基于条件生成对抗网络(cGAN)的方法,以半监督设置和人工参与的方式解决分割问题。更具体地说,我们使用生成对抗网络中的生成器在未标记数据上合成分割结果,并使用判别器识别需要专家标注的不可靠切片。在一个传统标准基准测试上的定量结果表明,尽管我们的方法所需的标注数据要少得多,但在切片级评估中,它与当前最先进的全监督方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd9/7543994/9c744e2c1032/nihms-1633779-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验