Ravanbakhsh Mahdyar, Tschernezki Vadim, Last Felix, Klein Tassilo, Batmanghelich Kayhan, Tresp Volker, Nabi Moin
TU- Berlin.
SAP ML Research.
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:1040-1044. doi: 10.1109/ICASSP40776.2020.9053555. Epub 2020 May 14.
Image segmentation is a ubiquitous step in almost any medical image study. Deep learning-based approaches achieve state-of-the-art in the majority of image segmentation benchmarks. However, end-to-end training of such models requires sufficient annotation. In this paper, we propose a method based on conditional Generative Adversarial Network (cGAN) to address segmentation in semi-supervised setup and in a human-in-the-loop fashion. More specifically, we use the generator in the GAN to synthesize segmentations on unlabeled data and use the discriminator to identify unreliable slices for which expert annotation is required. The quantitative results on a conventional standard benchmark show that our method is comparable with the state-of-the-art fully supervised methods in slice-level evaluation, despite of requiring far less annotated data.
图像分割几乎是任何医学图像研究中都普遍存在的一个步骤。基于深度学习的方法在大多数图像分割基准测试中都达到了当前的先进水平。然而,此类模型的端到端训练需要足够的标注。在本文中,我们提出了一种基于条件生成对抗网络(cGAN)的方法,以半监督设置和人工参与的方式解决分割问题。更具体地说,我们使用生成对抗网络中的生成器在未标记数据上合成分割结果,并使用判别器识别需要专家标注的不可靠切片。在一个传统标准基准测试上的定量结果表明,尽管我们的方法所需的标注数据要少得多,但在切片级评估中,它与当前最先进的全监督方法相当。