Suppr超能文献

一种预测原发性脊柱和骨盆肉瘤术后患者癌症特异性生存的新型临床工具:一项基于大人群的回顾性队列研究。

A Novel Clinical Tool to Predict Cancer-specific Survival in Postoperative Patients With Primary Spinal and Pelvic Sarcomas: A Large Population-Based Retrospective Cohort Study.

作者信息

Huang Chao, Huang Zhangheng, Ding Zichuan, Zhou Zongke

机构信息

Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China.

出版信息

Global Spine J. 2024 Apr;14(3):776-788. doi: 10.1177/21925682221121269. Epub 2022 Aug 24.

Abstract

STUDY DESIGN

Retrospective cohort study.

OBJECTIVE

Primary osseous sarcomas originating from the spine and pelvis are rare and usually portend inferior prognoses. Currently, the standard treatment for spinal and pelvic sarcomas is surgical resection, but the poor prognosis limits the benefits to postoperative patients. This study aims to identify the independent prognostic factors of cancer-specific survival (CSS) in postoperative patients with primary spinal and pelvic sarcomas and construct a nomogram for predicting these patients' 3-, 5-, and 10-year CSS probability.

METHODS

A total of 452 patients were enrolled from the Surveillance, Epidemiology, and End Results (SEER) database. They were divided into a training cohort and a validation cohort. Univariate and multivariate Cox regression analyses were used to identify these patients' CSS-related independent prognostic factors. Then, those factors were used to construct a prognostic nomogram for predicting the 3-, 5-, and 10-year CSS probability, whose predictive performance and clinical value were verified by the calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Finally, a mortality risk stratification system was constructed.

RESULTS

Sex, histological type, tumor stage, and tumor grade were identified as CSS-related independent prognostic factors. A nomogram with high predictive performance and good clinical value to predict the 3-, 5-, and 10-year CSS probability was constructed, on which a mortality risk stratification system was constructed based to divide these patients into 3 mortality risk subgroups effectively.

CONCLUSIONS

This study constructed and validated a clinical nomogram to predict CSS in postoperative patients with primary spinal and pelvic sarcomas. It could assist clinicians in classifying these patients into different mortality risk subgroups and realize sarcoma-specific management.

摘要

研究设计

回顾性队列研究。

目的

原发性脊柱和骨盆骨肉瘤较为罕见,通常预后较差。目前,脊柱和骨盆肉瘤的标准治疗方法是手术切除,但预后不佳限制了术后患者的获益。本研究旨在确定原发性脊柱和骨盆肉瘤术后患者癌症特异性生存(CSS)的独立预后因素,并构建一个列线图来预测这些患者3年、5年和10年的CSS概率。

方法

从监测、流行病学和最终结果(SEER)数据库中纳入了452例患者。他们被分为训练队列和验证队列。采用单因素和多因素Cox回归分析来确定这些患者CSS相关的独立预后因素。然后,利用这些因素构建一个预测3年、5年和10年CSS概率的预后列线图,通过校准曲线、受试者操作特征(ROC)曲线和决策曲线分析(DCA)验证其预测性能和临床价值。最后,构建了一个死亡风险分层系统。

结果

性别、组织学类型、肿瘤分期和肿瘤分级被确定为CSS相关的独立预后因素。构建了一个具有高预测性能和良好临床价值的列线图,用于预测3年、5年和10年的CSS概率,并在此基础上构建了一个死亡风险分层系统,有效地将这些患者分为3个死亡风险亚组。

结论

本研究构建并验证了一个临床列线图,用于预测原发性脊柱和骨盆肉瘤术后患者的CSS。它可以帮助临床医生将这些患者分为不同的死亡风险亚组,并实现肉瘤的个体化管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d13/11192141/4ac8f617b863/10.1177_21925682221121269-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验