Suppr超能文献

脊髓星形细胞瘤术后患者癌症特异性生存的独立预后因素及列线图预测

Independent Prognostic Factors and Nomogram Prediction of Cancer-Specific Survival in Postoperative Patients With Spinal Cord Astrocytoma.

作者信息

Wang Yang, Jiao Jianhang, Yu Tong, Wang Zhonghan, Jiang Weibo, Gong Xuqiang, Zhang Han, Yue Jing, Wu Minfei

机构信息

Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China.

Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.

出版信息

Global Spine J. 2025 Mar;15(2):370-381. doi: 10.1177/21925682231191094. Epub 2023 Jul 27.

Abstract

STUDY DESIGN

Retrospective cohort study.

OBJECTIVE

Spinal cord astrocytoma (SCA) is a rare central nervous system malignancy that typically requires early surgical intervention. However, the substantial frequency of relapse and bad outcomes limit the surgical advantage for patients. Herein, we aimed to determine the independent prognostic factors of cancer-specific survival (CSS) in post-surgical patients with primary SCA and to develop a new method to estimate the chances of CSS in these patients at 3-, 5- and 10-year.

METHODS

A total of 364 postoperative patients with SCA were recruited from the Surveillance, Epidemiology, and End Results database and randomly assigned to the training and validation sets. Univariate and multivariate Cox regression assessments were used to identify independent prognostic indicators. Second, a nomogram was established by integrating these indicators to estimate 3-, 5-, and 10-year CSS in patients with SCA who underwent surgery. Subsequently, the discriminatory power and predictive performance of the nomogram were assessed using the receiver operating characteristic (ROC) curve, calibration curves, and decision curve analysis (DCA). Finally, a mortality risk stratification system was generated.

RESULTS

Age, tumor stage, histological type, and radiotherapy were recognized as potential predictive indicators of CSS for postoperative patients with SCA. The ROC curve and DCA indicate that the nomogram has good accuracy and high clinical utility. Furthermore, the mortality risk stratification system efficiently divides patients into 3 risk subgroups.

CONCLUSIONS

The nomogram could accurately anticipate the 3-, 5-, and 10-year percentages of CSS in postoperative patients with SCA. It could assist clinicians with personalized medical counseling, risk stratification management, and clinical decision-making, improving the clinical outcomes of these patients.

摘要

研究设计

回顾性队列研究。

目的

脊髓星形细胞瘤(SCA)是一种罕见的中枢神经系统恶性肿瘤,通常需要早期手术干预。然而,复发频率高和预后不良限制了手术对患者的优势。在此,我们旨在确定原发性SCA术后患者癌症特异性生存(CSS)的独立预后因素,并开发一种新方法来估计这些患者3年、5年和10年CSS的概率。

方法

从监测、流行病学和最终结果数据库中招募了364例SCA术后患者,并随机分配到训练集和验证集。采用单因素和多因素Cox回归评估来确定独立的预后指标。其次,通过整合这些指标建立了一个列线图,以估计接受手术的SCA患者的3年、5年和10年CSS。随后,使用受试者操作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估列线图的辨别力和预测性能。最后,生成了一个死亡风险分层系统。

结果

年龄、肿瘤分期、组织学类型和放疗被认为是SCA术后患者CSS的潜在预测指标。ROC曲线和DCA表明列线图具有良好的准确性和较高的临床实用性。此外,死亡风险分层系统有效地将患者分为3个风险亚组。

结论

列线图可以准确预测SCA术后患者3年、5年和10年的CSS百分比。它可以帮助临床医生进行个性化医疗咨询、风险分层管理和临床决策,改善这些患者的临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7dc/11877478/ceed27f53d05/10.1177_21925682231191094-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验