Duong H T Kim, Abdibastami Ashkan, Gloag Lucy, Barrera Liam, Gooding J Justin, Tilley Richard D
School of Chemistry, UNSW Sydney, NSW 2052, Australia.
Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia.
Nanoscale. 2022 Oct 6;14(38):13890-13914. doi: 10.1039/d2nr01897g.
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
磁粒子成像(MPI)是一种新兴的非侵入性技术,有望提供高质量图像、无辐射、高深度穿透且几乎无组织背景干扰。MPI中的信号强度和空间分辨率在很大程度上取决于示踪剂的特性。因此,为在MPI的各种应用中实现最佳效果,必须仔细考虑这些纳米颗粒的选择。在本综述中,我们将概述MPI的原理以及示踪剂产生最佳信号所需的关键标准。还将讨论诸如磁铁矿、金属铁氧体、磁赤铁矿、零价铁@氧化铁核@壳、碳化铁和铁钴合金纳米颗粒等纳米颗粒材料及其合成途径。由于表面修饰在使这些示踪剂能够用于生物医学应用方面起着重要作用,因此还将讨论包括从有机介质转移到无机介质的涂层选择。最后,我们将讨论不同的生物医学应用,并就每种应用最合适的示踪剂提供见解。
Adv Drug Deliv Rev. 2018-12-13
Chem Commun (Camb). 2020-2-26
J Phys Chem Lett. 2015-7-2
ACS Appl Bio Mater. 2023-8-21
IEEE Trans Med Imaging. 2015-5
Chem Mater. 2025-5-20
Nanomaterials (Basel). 2024-12-7
Int J Mol Sci. 2024-3-13
Nat Rev Methods Primers. 2023