Suppr超能文献

从电子病历中检测过敏输血相关不良事件。

Detection of allergic transfusion-related adverse events from electronic medical records.

机构信息

Office of Biostatistics and Pharmacovigilance, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.

International Business Machines (IBM) Corporation, Bethesda, Maryland, USA.

出版信息

Transfusion. 2022 Oct;62(10):2029-2038. doi: 10.1111/trf.17069. Epub 2022 Aug 25.

Abstract

BACKGROUND

Transfusion-related adverse events can be unrecognized and unreported. As part of the US Food and Drug Administration's Center for Biologics Evaluation and Research Biologics Effectiveness and Safety initiative, we explored whether machine learning methods, such as natural language processing (NLP), can identify and report transfusion allergic reactions (ARs) from electronic health records (EHRs).

STUDY DESIGN AND METHODS

In a 4-year period, all 146 reported transfusion ARs were pulled from a database of 86,764 transfusions in an academic health system, along with a random sample of 605 transfusions without reported ARs. Structured and unstructured EHR data were retrieved, including demographics, new symptoms, medications, and lab results. In unstructured data, evidence from clinicians' notes, test results, and prescriptions fields identified transfusion ARs, which were used to extract NLP features. Clinician reviews of selected validation cases assessed and confirmed model performance.

RESULTS

Clinician reviews of selected validation cases yielded a sensitivity of 67.9% and a specificity of 97.5% at a threshold of 0.9, with a positive predictive value (PPV) of 84%, estimated to 4.5% when extrapolated to match transfusion AR incidence in the full transfusion dataset. A higher threshold achieved sensitivity of 43% with specificity/PPV of 100% in our validation set. Essential features predicting ARs were recognized transfusion reactions, administration of antihistamines or glucocorticoids, and skin symptoms (e.g., hives and itching). Removal of NLP features decreased model performance.

DISCUSSION

NLP algorithms can identify transfusion reactions from the EHR with a reasonable level of precision for subsequent clinician review and confirmation.

摘要

背景

输血相关的不良反应可能未被识别和报告。作为美国食品和药物管理局(FDA)生物制品评估和研究中心生物制品有效性和安全性倡议的一部分,我们探讨了机器学习方法(如自然语言处理(NLP))是否可以从电子健康记录(EHR)中识别和报告输血过敏反应(AR)。

研究设计和方法

在四年期间,从一个学术医疗系统的 86764 次输血中抽取了所有 146 例报告的输血 AR 病例,并与随机抽取的 605 例无报告 AR 的输血病例一起,从数据库中抽取了所有报告的输血 AR 病例。提取了结构化和非结构化 EHR 数据,包括人口统计学、新症状、药物和实验室结果。在非结构化数据中,从临床医生的笔记、测试结果和处方字段中提取的证据识别了输血 AR,并从中提取了 NLP 特征。选择验证案例的临床医生审查评估并确认了模型性能。

结果

选择验证案例的临床医生审查得出,在阈值为 0.9 时,敏感性为 67.9%,特异性为 97.5%,阳性预测值(PPV)为 84%,当外推到与全输血数据集的输血 AR 发生率匹配时,估计为 4.5%。在我们的验证集中,更高的阈值达到了 43%的敏感性,特异性/PPV 为 100%。预测 AR 的关键特征是识别出的输血反应、抗组胺药或糖皮质激素的给药以及皮肤症状(如荨麻疹和瘙痒)。删除 NLP 特征会降低模型性能。

讨论

NLP 算法可以从 EHR 中识别输血反应,具有相当高的精度,以便随后由临床医生进行审查和确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验