Suppr超能文献

基于脑电图的左右脚屈伸解码预测模型

A Decoding Prediction Model of Flexion and Extension of Left and Right Feet from Electroencephalogram.

作者信息

AlArfaj Abeer Abdulaziz, Hosni Mahmoud Hanan A, Hafez Alaaeldin M

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 84412, Saudi Arabia.

出版信息

Behav Sci (Basel). 2022 Aug 13;12(8):285. doi: 10.3390/bs12080285.

Abstract

Detection of limb motor functions utilizing brain signals is a significant technique in the brain signal gain model (BSM) that can be effectively employed in various biomedical applications. Our research presents a novel technique for prediction of feet motor functions by applying a deep learning model with cascading transfer learning technique to use the electroencephalogram (EEG) in the training stage. Our research deduces the electroencephalogram data (EEG) of stroke incidence to propose functioning high-tech interfaces for predicting left and right foot motor functions. This paper presents a transfer learning with several source input domains to serve a target domain with small input size. Transfer learning can reduce the learning curve effectively. The correctness of the presented model is evaluated by the abilities of motor functions in the detection of left and right feet. Extensive experiments were performed and proved that a higher accuracy was reached by the introduced BSM-EEG neural network with transfer learning. The prediction of the model accomplished 97.5% with less CPU time. These accurate results confirm that the BSM-EEG neural model has the ability to predict motor functions for brain-injured stroke therapy.

摘要

利用脑信号检测肢体运动功能是脑信号增益模型(BSM)中的一项重要技术,可有效应用于各种生物医学应用。我们的研究提出了一种新技术,通过在训练阶段应用具有级联迁移学习技术的深度学习模型来预测足部运动功能,该模型使用脑电图(EEG)。我们的研究推导了中风发病时的脑电图数据(EEG),以提出用于预测左右脚运动功能的功能性高科技接口。本文提出了一种具有多个源输入域的迁移学习方法,以服务于小输入规模的目标域。迁移学习可以有效降低学习曲线。通过检测左右脚的运动功能能力来评估所提出模型的正确性。进行了大量实验,结果证明引入迁移学习的BSM-EEG神经网络达到了更高的准确率。该模型的预测在较少的CPU时间内完成了97.5%。这些准确的结果证实,BSM-EEG神经模型有能力预测脑损伤中风治疗的运动功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/371f/9404826/7f13ab5e8008/behavsci-12-00285-g001.jpg

相似文献

2
A Deep Learning Model for Stroke Patients' Motor Function Prediction.
Appl Bionics Biomech. 2022 Aug 5;2022:8645165. doi: 10.1155/2022/8645165. eCollection 2022.
3
Motor imagery EEG decoding using manifold embedded transfer learning.
J Neurosci Methods. 2022 Mar 15;370:109489. doi: 10.1016/j.jneumeth.2022.109489. Epub 2022 Jan 25.
5
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.
6
Decoding kinetic features of hand motor preparation from single-trial EEG using convolutional neural networks.
Eur J Neurosci. 2021 Jan;53(2):556-570. doi: 10.1111/ejn.14936. Epub 2020 Aug 25.
7
A transfer learning framework based on motor imagery rehabilitation for stroke.
Sci Rep. 2021 Oct 5;11(1):19783. doi: 10.1038/s41598-021-99114-1.
8
Transductive Joint-Knowledge-Transfer TSK FS for Recognition of Epileptic EEG Signals.
IEEE Trans Neural Syst Rehabil Eng. 2018 Aug;26(8):1481-1494. doi: 10.1109/TNSRE.2018.2850308. Epub 2018 Jun 25.
9
Epileptic Seizure Detection Using Brain-Rhythmic Recurrence Biomarkers and ONASNet-Based Transfer Learning.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:979-989. doi: 10.1109/TNSRE.2022.3165060. Epub 2022 Apr 19.
10
Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals.
Front Neurosci. 2021 Jun 23;15:667907. doi: 10.3389/fnins.2021.667907. eCollection 2021.

本文引用的文献

1
Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke.
Brain Sci. 2021 Jul 7;11(7):900. doi: 10.3390/brainsci11070900.
3
BCI for stroke rehabilitation: motor and beyond.
J Neural Eng. 2020 Aug 17;17(4):041001. doi: 10.1088/1741-2552/aba162.
4
The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets.
Ann Biomed Eng. 2020 Apr;48(4):1430-1440. doi: 10.1007/s10439-020-02465-5. Epub 2020 Jan 30.
5
Treadmill training to improve mobility for people with sub-acute stroke: a phase II feasibility randomized controlled trial.
Clin Rehabil. 2018 Feb;32(2):201-212. doi: 10.1177/0269215517720486. Epub 2017 Jul 21.
6
On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1558-1567. doi: 10.1109/TNSRE.2017.2679607. Epub 2017 Mar 8.
7
A novel deep learning approach for classification of EEG motor imagery signals.
J Neural Eng. 2017 Feb;14(1):016003. doi: 10.1088/1741-2560/14/1/016003. Epub 2016 Nov 30.
8
Prediction of Intrinsically Caused Tripping Events in Individuals With Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2017 Aug;25(8):1202-1210. doi: 10.1109/TNSRE.2016.2614521. Epub 2016 Oct 11.
10
Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2015 Nov;23(6):956-63. doi: 10.1109/TNSRE.2014.2360822. Epub 2014 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验