Suppr超能文献

基于深度学习的从外周神经信号中解码运动意图的方法

Deep Learning-Based Approaches for Decoding Motor Intent From Peripheral Nerve Signals.

作者信息

Luu Diu K, Nguyen Anh T, Jiang Ming, Xu Jian, Drealan Markus W, Cheng Jonathan, Keefer Edward W, Zhao Qi, Yang Zhi

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.

Fasikl Incorporated, Minneapolis, MN, United States.

出版信息

Front Neurosci. 2021 Jun 23;15:667907. doi: 10.3389/fnins.2021.667907. eCollection 2021.

Abstract

Previous literature shows that deep learning is an effective tool to decode the motor intent from neural signals obtained from different parts of the nervous system. However, deep neural networks are often computationally complex and not feasible to work in real-time. Here we investigate different approaches' advantages and disadvantages to enhance the deep learning-based motor decoding paradigm's efficiency and inform its future implementation in real-time. Our data are recorded from the amputee's residual peripheral nerves. While the primary analysis is offline, the nerve data is cut using a sliding window to create a "pseudo-online" dataset that resembles the conditions in a real-time paradigm. First, a comprehensive collection of feature extraction techniques is applied to reduce the input data dimensionality, which later helps substantially lower the motor decoder's complexity, making it feasible for translation to a real-time paradigm. Next, we investigate two different strategies for deploying deep learning models: a one-step (1S) approach when big input data are available and a two-step (2S) when input data are limited. This research predicts five individual finger movements and four combinations of the fingers. The 1S approach using a recurrent neural network (RNN) to concurrently predict all fingers' trajectories generally gives better prediction results than all the machine learning algorithms that do the same task. This result reaffirms that deep learning is more advantageous than classic machine learning methods for handling a large dataset. However, when training on a smaller input data set in the 2S approach, which includes a classification stage to identify active fingers before predicting their trajectories, machine learning techniques offer a simpler implementation while ensuring comparably good decoding outcomes to the deep learning ones. In the classification step, either machine learning or deep learning models achieve the accuracy and F1 score of 0.99. Thanks to the classification step, in the regression step, both types of models result in a comparable mean squared error (MSE) and variance accounted for (VAF) scores as those of the 1S approach. Our study outlines the trade-offs to inform the future implementation of real-time, low-latency, and high accuracy deep learning-based motor decoder for clinical applications.

摘要

以往文献表明,深度学习是一种从神经系统不同部位获取的神经信号中解码运动意图的有效工具。然而,深度神经网络通常计算复杂,难以实时运行。在此,我们研究了不同方法的优缺点,以提高基于深度学习的运动解码范式的效率,并为其未来的实时实现提供参考。我们的数据记录自截肢者的残余外周神经。虽然主要分析是离线进行的,但神经数据通过滑动窗口进行切割,以创建一个类似于实时范式条件的“伪在线”数据集。首先,应用了一系列全面的特征提取技术来降低输入数据的维度,这随后有助于大幅降低运动解码器的复杂性,使其能够转化为实时范式。接下来,我们研究了部署深度学习模型的两种不同策略:当有大量输入数据时采用一步法(1S),当输入数据有限时采用两步法(2S)。本研究预测了五个单独的手指运动以及手指的四种组合。使用递归神经网络(RNN)同时预测所有手指轨迹的1S方法通常比执行相同任务的所有机器学习算法给出更好的预测结果。这一结果再次证明,在处理大型数据集时,深度学习比经典机器学习方法更具优势。然而,在2S方法中,当在较小的输入数据集上进行训练时,该方法包括一个分类阶段,在预测手指轨迹之前识别活动手指,机器学习技术提供了更简单的实现方式,同时确保与深度学习方法具有相当的良好解码结果。在分类步骤中,机器学习或深度学习模型均达到了0.99的准确率和F1分数。由于分类步骤,在回归步骤中,两种类型的模型均产生了与1S方法相当的均方误差(MSE)和可解释方差分数(VAF)。我们的研究概述了这些权衡,为基于深度学习的实时、低延迟和高精度运动解码器在临床应用中的未来实现提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b29/8260935/bd5f31e00309/fnins-15-667907-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验