Suppr超能文献

关于提取数字化螺旋动力学表示:早期阿尔茨海默病检测的迁移学习研究

On Extracting Digitized Spiral Dynamics' Representations: A Study on Transfer Learning for Early Alzheimer's Detection.

作者信息

Carfora Daniela, Kim Suyeon, Houmani Nesma, Garcia-Salicetti Sonia, Rigaud Anne-Sophie

机构信息

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 9 rue Charles Fourier, CEDEX, 91011 Evry, France.

AP-HP, Groupe Hospitalier Cochin Paris Centre, Pôle Gérontologie, Hôpital Broca, 75013 Paris, France.

出版信息

Bioengineering (Basel). 2022 Aug 9;9(8):375. doi: 10.3390/bioengineering9080375.

Abstract

This work proposes a decision-aid tool for detecting Alzheimer's disease (AD) at an early stage, based on the Archimedes spiral, executed on a Wacom digitizer. Our work assesses the potential of the task as a dynamic gesture and defines the most pertinent methodology for exploiting transfer learning to compensate for sparse data. We embed directly in spiral trajectory images, kinematic time functions. With transfer learning, we perform automatic feature extraction on such images. Experiments on 30 AD patients and 45 healthy controls (HC) show that the extracted features allow a significant improvement in sensitivity and accuracy, compared to raw images. We study at which level of the deep network features have the highest discriminant capabilities. Results show that intermediate-level features are the best for our specific task. Decision fusion of experts trained on such descriptors outperforms low-level fusion of hybrid images. When fusing decisions of classifiers trained on the best features, from pressure, altitude, and velocity images, we obtain 84% of sensitivity and 81.5% of accuracy, achieving an absolute improvement of 22% in sensitivity and 7% in accuracy. We demonstrate the potential of the spiral task for AD detection and give a complete methodology based on off-the-shelf features.

摘要

这项工作提出了一种基于阿基米德螺旋线的早期阿尔茨海默病(AD)检测决策辅助工具,该工具在数位绘图板上运行。我们的工作评估了该任务作为一种动态手势的潜力,并定义了利用迁移学习来弥补数据稀疏的最相关方法。我们将运动学时间函数直接嵌入螺旋轨迹图像中。通过迁移学习,我们对这些图像进行自动特征提取。对30名AD患者和45名健康对照(HC)进行的实验表明,与原始图像相比,提取的特征在灵敏度和准确性方面有显著提高。我们研究了深度网络的哪些层级特征具有最高的判别能力。结果表明,中级特征最适合我们的特定任务。基于此类描述符训练的专家决策融合优于混合图像的低级融合。当融合基于最佳特征(压力、高度和速度图像)训练的分类器的决策时,我们获得了84%的灵敏度和81.5%的准确性,灵敏度绝对提高了22%,准确性提高了7%。我们展示了螺旋任务在AD检测中的潜力,并给出了基于现成特征的完整方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c3/9404815/9e32e8bda2a5/bioengineering-09-00375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验