Suppr超能文献

基于音频的无人机检测与识别:深度学习技术与生成对抗网络增强数据集

Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks.

机构信息

Department of Computer Science and Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.

KINDI Center for Computing Research, College of Engineering, Qatar University, Doha 2713, Qatar.

出版信息

Sensors (Basel). 2021 Jul 21;21(15):4953. doi: 10.3390/s21154953.

Abstract

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone's acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.

摘要

无人机不仅在娱乐方面越来越受欢迎,而且在工程、医学、物流、安全等日常应用中也得到了广泛应用。除了它们的有用应用之外,由于它们可能被用于恶意活动,人们对物理基础设施的安全、安保和隐私产生了令人震惊的担忧。为了解决这个问题,我们提出了一种使用不同深度学习算法的无人机声学特征来自动检测和识别无人机的新方法。然而,缺乏声学无人机数据集限制了实施有效解决方案的能力。在本文中,我们旨在通过引入一个混合无人机声学数据集来填补这一空白,该数据集由记录的无人机音频片段和使用最先进的深度学习技术(称为生成对抗网络)人工生成的无人机音频样本组成。此外,我们研究了使用不同深度学习算法(即卷积神经网络、循环神经网络和卷积循环神经网络)的无人机音频在无人机检测和识别中的有效性。此外,我们还研究了我们提出的混合数据集在无人机检测中的影响。我们的研究结果证明了使用深度学习技术进行无人机检测和识别的优势,同时证实了我们的假设,即使用生成对抗网络生成逼真的无人机音频片段有助于检测新的和不熟悉的无人机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5248/8348319/08f982079b54/sensors-21-04953-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验