文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

适体修饰的红细胞膜包被的pH敏感纳米颗粒用于多形性胶质母细胞瘤的c-Met靶向治疗

Aptamer-Modified Erythrocyte Membrane-Coated pH-Sensitive Nanoparticles for c-Met-Targeted Therapy of Glioblastoma Multiforme.

作者信息

Liu Xianping, Chen Yixin, Geng Daoying, Li Haichun, Jiang Ting, Luo Zimiao, Wang Jianhong, Pang Zhiqing, Zhang Jun

机构信息

Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China.

National Center for Neurological Disorders, 12 Wulumuqi Middle Road, Shanghai 200040, China.

出版信息

Membranes (Basel). 2022 Jul 29;12(8):744. doi: 10.3390/membranes12080744.


DOI:10.3390/membranes12080744
PMID:36005659
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9415068/
Abstract

Biomimetic drug delivery systems, especially red blood cell (RBC) membrane-based nanoparticle drug delivery systems (RNP), have been extensively utilized in tumor drug delivery because of their excellent biocompatibility and prolonged circulation. In this study, we developed an active targeting pH-sensitive RNP loaded with DOX by decorating an aptamer SL1 on RBC membranes (SL1-RNP-DOX) for c-Met-targeted therapy of glioblastoma multiforme (GBM). SL1 could specifically bind to c-Met, which is highly expressed in GBM U87MG cells and facilitate DOX delivery to GBM cells. In vitro studies demonstrated that U87MG cells had a higher uptake of SL1-RNP-DOX (3.25 folds) and a stronger pro-apoptosis effect than unmodified RNP-DOX. In vivo fluorescence imaging and tissue distribution further demonstrated the higher tumor distribution of SL1-RNP-DOX (2.17 folds) compared with RNP-DOX. As a result, SL1-RNP-DOX presented the best anti-GBM effect with a prolonged median survival time (23 days vs. 15.5 days) and the strongest tumor cell apoptosis in vivo among all groups. In conclusion, SL1-RNP-DOX exhibited a promising targeting delivery strategy for GBM therapy.

摘要

仿生药物递送系统,尤其是基于红细胞(RBC)膜的纳米颗粒药物递送系统(RNP),因其优异的生物相容性和延长的循环时间而被广泛应用于肿瘤药物递送。在本研究中,我们通过在红细胞膜上修饰适配体SL1(SL1-RNP-DOX),开发了一种用于多形性胶质母细胞瘤(GBM)的c-Met靶向治疗的主动靶向pH敏感RNP,其负载有阿霉素(DOX)。SL1可以特异性结合在GBM U87MG细胞中高表达的c-Met,并促进阿霉素向GBM细胞的递送。体外研究表明,U87MG细胞对SL1-RNP-DOX的摄取更高(3.25倍),并且比未修饰的RNP-DOX具有更强的促凋亡作用。体内荧光成像和组织分布进一步证明,与RNP-DOX相比,SL1-RNP-DOX的肿瘤分布更高(2.17倍)。因此,SL1-RNP-DOX在所有组中表现出最佳的抗GBM效果,中位生存时间延长(23天对15.5天),体内肿瘤细胞凋亡最强。总之,SL1-RNP-DOX为GBM治疗展示了一种有前景的靶向递送策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/23a9f2f998af/membranes-12-00744-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/9bd83415a73f/membranes-12-00744-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/b0026b2054d0/membranes-12-00744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/126d5d9bf960/membranes-12-00744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/9deb17798958/membranes-12-00744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/526643bcdeff/membranes-12-00744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/f0cff455112e/membranes-12-00744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/fdc9455587c0/membranes-12-00744-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/23a9f2f998af/membranes-12-00744-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/9bd83415a73f/membranes-12-00744-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/b0026b2054d0/membranes-12-00744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/126d5d9bf960/membranes-12-00744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/9deb17798958/membranes-12-00744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/526643bcdeff/membranes-12-00744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/f0cff455112e/membranes-12-00744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/fdc9455587c0/membranes-12-00744-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3280/9415068/23a9f2f998af/membranes-12-00744-g007.jpg

相似文献

[1]
Aptamer-Modified Erythrocyte Membrane-Coated pH-Sensitive Nanoparticles for c-Met-Targeted Therapy of Glioblastoma Multiforme.

Membranes (Basel). 2022-7-29

[2]
Erythrocyte-cancer Hybrid Membrane-camouflaged Mesoporous Silica Nanoparticles Loaded with Gboxin for Glioma-targeting Therapy.

Curr Pharm Biotechnol. 2022

[3]
Effective and Targeted Human Orthotopic Glioblastoma Xenograft Therapy via a Multifunctional Biomimetic Nanomedicine.

Adv Mater. 2018-10-16

[4]
Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles.

Sci Rep. 2020-7-9

[5]
TRAIL and doxorubicin combination enhances anti-glioblastoma effect based on passive tumor targeting of liposomes.

J Control Release. 2011-5-15

[6]
Doxorubicin-Loaded Carbon Dots Lipid-Coated Calcium Phosphate Nanoparticles for Visual Targeted Delivery and Therapy of Tumor.

Int J Nanomedicine. 2020-1-21

[7]
Targeting c-met receptor tyrosine kinase by the DNA aptamer SL1 as a potential novel therapeutic option for myeloma.

J Cell Mol Med. 2018-10-24

[8]
Tumor microenvironment targeting for glioblastoma multiforme treatment via hybrid cell membrane coating supramolecular micelles.

J Control Release. 2024-2

[9]
Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes.

Mater Des. 2020-7

[10]
Folic Acid-Modified Erythrocyte Membrane Loading Dual Drug for Targeted and Chemo-Photothermal Synergistic Cancer Therapy.

Mol Pharm. 2021-1-4

引用本文的文献

[1]
Immune response recalibration using immune therapy and biomimetic nano-therapy against high-grade gliomas and brain metastases.

Asian J Pharm Sci. 2025-4

[2]
Development of dual aptamers-functionalized c-MET PROTAC degraders for targeted therapy of osteosarcoma.

Theranostics. 2025-1-1

[3]
In Vitro and In Vivo Evaluation of Lactoferrin-Modified Liposomal Etomidate with Enhanced Brain-Targeting Effect for General Anesthesia.

Pharmaceutics. 2024-6-14

[4]
Multiplexed Screening Using Barcoded Aptamer Technology to Identify Oligonucleotide-Based Targeting Reagents.

Nucleic Acid Ther. 2024

[5]
Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme.

Bioeng Transl Med. 2023-2-14

[6]
The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma.

Front Mol Biosci. 2023-1-4

本文引用的文献

[1]
Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level.

ACS Nano. 2022-4-26

[2]
Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.

Pharmacol Res. 2021-9

[3]
A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer.

Int J Nanomedicine. 2021

[4]
Management of glioblastoma: State of the art and future directions.

CA Cancer J Clin. 2020-6-1

[5]
Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting.

Beilstein J Nanotechnol. 2019-9-11

[6]
Erythroliposomes: Integrated Hybrid Nanovesicles Composed of Erythrocyte Membranes and Artificial Lipid Membranes for Pore-Forming Toxin Clearance.

ACS Nano. 2019-3-19

[7]
Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier.

Int J Mol Sci. 2018-9-22

[8]
Impact of removed tumor volume and location on patient outcome in glioblastoma.

J Neurooncol. 2017-7-6

[9]
Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells.

Int J Pharm. 2017-5-30

[10]
Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection.

J Control Release. 2017-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索