SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.
Center for Systems Neuroscience (ZSN), Hannover, Germany.
Cell Mol Life Sci. 2022 Aug 25;79(9):497. doi: 10.1007/s00018-022-04522-9.
Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.
脊髓性肌萎缩症(SMA)是由运动神经元存活(SMN)蛋白水平降低引起的,导致脊髓和脑干腹角中的较低运动神经元优先退化。然而,SMN 蛋白广泛表达,越来越多的证据表明 SMA 存在多系统表型。由于 SMN 功能的丧失是至关重要的,因此重要的是要从 SMN 蛋白本身的水平上破译 SMN 功能的调节机制。蛋白质的翻译后修饰(PTMs)调节多种功能和过程,包括活性、细胞运输和稳定性。在 SMN 序列中已经确定了几个 PTM 位点。在这里,我们绘制了已识别的 SMN PTMs 图谱,突出了磷酸化作为影响 SMN 定位、稳定性和功能的关键调节剂。此外,我们提出 SMN 磷酸化作为 SMN 细胞内相互作用和细胞分布的关键因素。我们概述了与脊髓性肌萎缩症(SMA)基因产物 SMN 磷酸化相关的重要性,因为该磷酸化在这种神经退行性疾病中损害了 SMN 的基本管家功能。最后,我们将 SMA 患者突变与推定和已验证的磷酸化位点进行比较。因此,我们从临床角度强调了磷酸化作为细胞调节剂的重要性,因为它可能是组合 SMA 治疗策略的另一个潜在靶点。