Suppr超能文献

Tbx18 通过招募上皮-间充质转化程序来协调心肌细胞的细胞结构转分化为起搏细胞。

Tbx18 Orchestrates Cytostructural Transdifferentiation of Cardiomyocytes to Pacemaker Cells by Recruiting the Epithelial-Mesenchymal Transition Program.

机构信息

Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.

Department of Pediatrics, Emory University, Atlanta, Georgia 30322, United States.

出版信息

J Proteome Res. 2022 Oct 7;21(10):2277-2292. doi: 10.1021/acs.jproteome.2c00133. Epub 2022 Aug 25.

Abstract

Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.

摘要

先前,我们报道了胚胎转录因子 Tbx18 的异源表达可将心室肌细胞重编程为诱导性起搏细胞(Tbx18-iPMs),但其关键途径尚不清楚。在这里,我们使用串联质量标签蛋白质组学方法来研究 Tbx18 对新生大鼠心室肌细胞的影响。Tbx18 的表达引发了广泛的蛋白质组重编程。Tbx18-iPMs 表现出已知起搏离子通道的表达增加,包括 Hcn4 和 Cx45,以及机械敏感离子通道 Piezo1、Trpp2(PKD2)和 TrpM7 的上调。代谢途径广泛下调,与心室兴奋-收缩偶联相关的离子通道也是如此。Tbx18-iPMs 还表现出广泛的细胞内细胞骨架和细胞外基质重塑,包括 96 种与上皮-间质转化(EMT)相关的差异表达蛋白。RNAseq 扩展了低丰度转录因子的覆盖范围,揭示了 EMT 诱导因子 Snai1、Snai2、Twist1、Twist2 和 Zeb2 的上调。最后,>200 个转录调节剂的网络扩散映射表明,EMT 和心脏发育因子占据 Tbx18 下游的相邻网络邻域,但位于代谢控制因子的上游。总之,心肌细胞向起搏细胞的转分化需要大量的电生成、代谢和细胞结构重塑。结构变化表现出 EMT 的特征。这些结果有助于正在进行的努力,以最大限度地提高工程生物起搏器的产量和表型稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f33c/9552783/486889228f80/pr2c00133_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验