Suppr超能文献

转录抑制因子 TBX18 抑制了出生后心肌细胞缝隙连接蛋白 43 的表达,破坏了细胞间的电耦联。

Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes.

机构信息

Cedars-Sinai Heart Institute, Los Angeles, California 90048, USA.

出版信息

J Biol Chem. 2011 Apr 22;286(16):14073-9. doi: 10.1074/jbc.M110.185298. Epub 2011 Jan 4.

Abstract

T-box transcription factors figure prominently in embryonic cardiac cell lineage specifications. Mesenchymal precursor cells expressing Tbx18 give rise to the heart's pacemaker, the sinoatrial node (SAN). We sought to identify targets of TBX18 transcriptional regulation in the heart by forced adenoviral overexpression in postnatal cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) transduced with GFP showed sarcolemmal, punctate Cx43 expression. In contrast, TBX18-transduced NRCMs exhibited sparse Cx43 expression. Both the transcript and protein levels of Cx43 were greatly down-regulated within 2 days of TBX18 transduction. Direct injection of TBX18 in the guinea pig heart in vivo inhibited Cx43 expression. The repressor activity of TBX18 on Cx43 was highly specific; protein levels of Cx45 and Cx40, which comprise the main gap junctions in the SAN and conduction system, were unchanged by TBX18. A reporter-based promoter assay demonstrated that TBX18 directly represses the Cx43 promoter. Phenotypically, TBX18-NRCMs exhibited slowed intercellular calcein dye transfer kinetics (421 ± 54 versus control 127 ± 43 ms). Intracellular Ca(2+) oscillations in control NRCM monolayers were highly synchronized. In contrast, TBX18 overexpression led to asynchronous Ca(2+) oscillations, demonstrating reduced cell-cell coupling. Decreased coupling led to slow electrical propagation; conduction velocity in TBX18 NRCMs slowed by more than 50% relative to control (2.9 ± 0.5 versus 14.3 ± 0.9 cm/s). Taken together, TBX18 specifically and directly represses Cx43 transcript and protein levels. Cx43 suppression leads to significant electrical uncoupling, but the preservation of other gap junction proteins supports slow action potential propagation, recapitulating a key phenotypic hallmark of the SAN.

摘要

T 盒转录因子在胚胎心脏细胞谱系特化中起着重要作用。表达 Tbx18 的间充质前体细胞产生心脏的起搏点,即窦房结(SAN)。我们试图通过在出生后心肌细胞中强制过表达腺病毒来鉴定 TBX18 转录调节的靶标。转导 GFP 的新生大鼠心肌细胞(NRCMs)显示出肌膜点状 Cx43 表达。相比之下,TBX18 转导的 NRCMs 表现出稀疏的 Cx43 表达。TBX18 转导后 2 天内,Cx43 的转录本和蛋白水平均大大下调。体内将 TBX18 直接注射到豚鼠心脏中会抑制 Cx43 的表达。TBX18 对 Cx43 的抑制活性具有高度特异性;Cx45 和 Cx40 的蛋白水平不变,Cx45 和 Cx40 构成 SAN 和传导系统中的主要缝隙连接。基于报告基因的启动子测定表明,TBX18 直接抑制 Cx43 启动子。表型上,TBX18-NRCMs 表现出细胞间钙黄绿素染料传递动力学减慢(421 ± 54 毫秒比对照 127 ± 43 毫秒)。对照 NRCM 单层中的细胞内 Ca 2+ 振荡高度同步。相比之下,TBX18 的过表达导致 Ca 2+ 振荡不同步,表明细胞间耦合减少。耦合减少导致电传导减慢;TBX18 NRCM 中的传导速度比对照减慢了 50%以上(2.9 ± 0.5 厘米/秒比 14.3 ± 0.9 厘米/秒)。综上所述,TBX18 特异性且直接抑制 Cx43 的转录本和蛋白水平。Cx43 的抑制导致明显的电去耦,但其他缝隙连接蛋白的保留支持缓慢的动作电位传播,再现了 SAN 的一个关键表型特征。

相似文献

1
Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes.
J Biol Chem. 2011 Apr 22;286(16):14073-9. doi: 10.1074/jbc.M110.185298. Epub 2011 Jan 4.
3
Electrical propagation in synthetic ventricular myocyte strands from germline connexin43 knockout mice.
Circ Res. 2004 Jul 23;95(2):170-8. doi: 10.1161/01.RES.0000134923.05174.2f. Epub 2004 Jun 10.
6
Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18.
Nat Biotechnol. 2013 Jan;31(1):54-62. doi: 10.1038/nbt.2465. Epub 2012 Dec 16.
7
Analysis of the rat connexin 43 proximal promoter in neonatal cardiomyocytes.
Gene. 2003 Dec 11;322:123-36. doi: 10.1016/j.gene.2003.08.011.
8
Relative contributions of connexins 40 and 43 to atrial impulse propagation in synthetic strands of neonatal and fetal murine cardiomyocytes.
Circ Res. 2006 Nov 24;99(11):1216-24. doi: 10.1161/01.RES.0000250607.34498.b4. Epub 2006 Oct 19.
9
Junctional delay, frequency, and direction-dependent uncoupling of human heterotypic Cx45/Cx43 gap junction channels.
J Mol Cell Cardiol. 2017 Oct;111:17-26. doi: 10.1016/j.yjmcc.2017.07.117. Epub 2017 Jul 29.

引用本文的文献

2
Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications.
Signal Transduct Target Ther. 2024 Nov 14;9(1):322. doi: 10.1038/s41392-024-02002-z.
3
Pacemaker Channels and the Chronotropic Response in Health and Disease.
Circ Res. 2024 May 10;134(10):1348-1378. doi: 10.1161/CIRCRESAHA.123.323250. Epub 2024 May 9.
4
Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18.
Nat Biomed Eng. 2024 Sep;8(9):1124-1141. doi: 10.1038/s41551-024-01211-9. Epub 2024 May 2.
5
Harnessing cell reprogramming for cardiac biological pacing.
J Biomed Sci. 2023 Aug 26;30(1):74. doi: 10.1186/s12929-023-00970-y.
6
MicroRNA-dependent suppression of biological pacemaker activity induced by TBX18.
Cell Rep Med. 2022 Dec 20;3(12):100871. doi: 10.1016/j.xcrm.2022.100871.
9
DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins.
ACS Nano. 2022 Apr 26;16(4):5335-5348. doi: 10.1021/acsnano.1c04303. Epub 2022 Mar 24.
10
Implementing Biological Pacemakers: Design Criteria for Successful.
Circ Arrhythm Electrophysiol. 2021 Oct;14(10):e009957. doi: 10.1161/CIRCEP.121.009957. Epub 2021 Oct 1.

本文引用的文献

1
Development of the pacemaker tissues of the heart.
Circ Res. 2010 Feb 5;106(2):240-54. doi: 10.1161/CIRCRESAHA.109.205419.
2
The sinus venosus progenitors separate and diversify from the first and second heart fields early in development.
Cardiovasc Res. 2010 Jul 1;87(1):92-101. doi: 10.1093/cvr/cvq033. Epub 2010 Jan 28.
3
The calcium and voltage clocks in sinoatrial node automaticity.
Korean Circ J. 2009 Jun;39(6):217-22. doi: 10.4070/kcj.2009.39.6.217. Epub 2009 Jun 30.
4
Tbx18 and the fate of epicardial progenitors.
Nature. 2009 Apr 16;458(7240):E8-9; discussion E9-10. doi: 10.1038/nature07916.
5
Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker.
Circulation. 2009 Mar 31;119(12):1562-75. doi: 10.1161/CIRCULATIONAHA.108.804369. Epub 2009 Mar 16.
6
Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria.
Circ Res. 2009 Apr 10;104(7):915-23. doi: 10.1161/CIRCRESAHA.108.193193. Epub 2009 Feb 26.
7
Setting the pace: Tbx3 and Tbx18 in cardiac conduction system development.
Circ Res. 2009 Feb 13;104(3):285-7. doi: 10.1161/CIRCRESAHA.109.193680.
8
IK1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers.
Circ Res. 2009 Feb 13;104(3):355-64. doi: 10.1161/CIRCRESAHA.108.178335. Epub 2009 Jan 2.
9
Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3.
Circ Res. 2009 Feb 13;104(3):388-97. doi: 10.1161/CIRCRESAHA.108.187062. Epub 2008 Dec 18.
10
Generation of mouse induced pluripotent stem cells without viral vectors.
Science. 2008 Nov 7;322(5903):949-53. doi: 10.1126/science.1164270. Epub 2008 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验