Faculty of Physics, University of Vienna, Vienna Center for Quantum Science and Technology (VCQ), A-1090 Vienna, Austria.
Faculty of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany.
Science. 2022 Aug 26;377(6609):987-990. doi: 10.1126/science.abp9941. Epub 2022 Aug 25.
Arrays of optically trapped nanoparticles have emerged as a platform for the study of complex nonequilibrium phenomena. Analogous to atomic many-body systems, one of the crucial ingredients is the ability to precisely control the interactions between particles. However, the optical interactions studied thus far only provide conservative optical binding forces of limited tunability. In this work, we exploit the phase coherence between the optical fields that drive the light-induced dipole-dipole interaction to couple two nanoparticles. In addition, we effectively switch off the optical interaction and observe electrostatic coupling between charged particles. Our results provide a route to developing fully programmable many-body systems of interacting nanoparticles with tunable nonreciprocal interactions, which are instrumental for exploring entanglement and topological phases in arrays of levitated nanoparticles.
光阱中的纳米粒子阵列已经成为研究复杂非平衡现象的平台。类似于原子多体系统,其中一个关键要素是能够精确控制粒子之间的相互作用。然而,迄今为止研究的光学相互作用仅提供了有限可调谐的保守光学束缚力。在这项工作中,我们利用驱动光诱导偶极力的光学场之间的相位相干性来耦合两个纳米粒子。此外,我们有效地关闭了光学相互作用,并观察到带电粒子之间的静电耦合。我们的结果为开发具有可调非互易相互作用的全可编程相互作用纳米粒子系统提供了一种途径,这对于探索悬浮纳米粒子阵列中的纠缠和拓扑相至关重要。