Suppr超能文献

基于单层超表面的用于悬浮粒子的可调谐片上光学阱。

Tunable on-chip optical traps for levitating particles based on single-layer metasurface.

作者信息

Sun Chuang, Pi Hailong, Kiang Kian Shen, Georgescu Tiberius S, Ou Jun-Yu, Ulbricht Hendrik, Yan Jize

机构信息

University of Southampton, Southampton, UK.

出版信息

Nanophotonics. 2024 Apr 15;13(15):2791-2801. doi: 10.1515/nanoph-2023-0873. eCollection 2024 Jul.

Abstract

Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications. Here, we experimentally demonstrated that a metasurface which forms two diffraction-limited focal points with a high numerical aperture (∼0.9) and high efficiency (31 %) can generate tunable optical potential wells without any intensity fluctuations. A bistable potential and double potential wells were observed in the experiment by varying the focal points' distance, and two nanoparticles were levitated in double potential wells for hours, which could be used for investigating the levitated particles' nonlinear dynamics, thermal dynamics and optical binding. This would pave the way for scaling the number of levitated optomechanical devices or realizing paralleled levitated sensors.

摘要

光学悬浮多个纳米粒子已成为研究复杂基础物理的平台,如非平衡现象、量子纠缠和光与物质相互作用,可用于高灵敏度和高精度地感知弱力和扭矩。需要一个复杂度更高的光学捕获格局来设计悬浮粒子之间超越单谐振阱的相互作用。然而,现有的基于空间光调制器来研究悬浮粒子间相互作用的平台存在效率低、焦点处不稳定、光学系统复杂以及传感应用扩展性不足等问题。在此,我们通过实验证明,一种能形成两个具有高数值孔径(约0.9)和高效率(31%)的衍射极限焦点的超表面,可产生无任何强度波动的可调谐光学势阱。通过改变焦点距离,在实验中观察到了双稳势和双势阱,并且两个纳米粒子在双势阱中悬浮了数小时,这可用于研究悬浮粒子的非线性动力学、热动力学和光学束缚。这将为增加悬浮光机械装置的数量或实现并行悬浮传感器铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6936/11501761/2d4a82831a8b/j_nanoph-2023-0873_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验