Suppr超能文献

利用高数值孔径超颖透镜实现纳米制造杆的悬浮与兆赫兹级可控旋转

Levitation and controlled MHz rotation of a nanofabricated rod by a high-NA metalens.

作者信息

Pi Hailong, Sun Chuang, Kiang Kian Shen, Georgescu Tiberius, Ou Bruce Jun-Yu, Ulbricht Hendrik, Yan Jize

机构信息

School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.

School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK.

出版信息

Microsyst Nanoeng. 2025 Apr 21;11(1):67. doi: 10.1038/s41378-025-00886-7.

Abstract

An optically levitated nanoparticle in a vacuum provides an ideal platform for ultra-precision measurements and fundamental physics studies because of the exceptionally high-quality factor and rich motion modes, which can be engineered by manipulating the optical field and the geometry of the nanoparticle. Nanofabrication technology with the ability to create arbitrary nanostructure arrays offers a precise way of engineering the optical field and the geometry of the nanoparticle. Here, for the first time, we optically levitate and rotate a nanofabricated nanorod via a nanofabricated a-Si metalens which strongly focuses a 1550 nm laser beam with a numerical aperture of 0.953. By manipulating the laser beam's polarization, the levitated nanorod's translation frequencies can be tuned, and the spin rotation mode can be switched on and off. Then, we showed the control of rotational frequency by changing the laser beam's intensity and polarization as well as the air pressure. Finally, a MHz spin rotation frequency of the nanorod is achieved in the experiment. This is the first demonstration of controlled optical spin in a metalens-based compact optical levitation system. Our research holds promise for realizing scalable on-chip integrated optical levitation systems.

摘要

真空中的光学悬浮纳米粒子由于具有极高的品质因数和丰富的运动模式,为超精密测量和基础物理研究提供了理想平台,这些运动模式可通过操纵光场和纳米粒子的几何形状来设计。具备创建任意纳米结构阵列能力的纳米制造技术为设计光场和纳米粒子的几何形状提供了一种精确方法。在此,我们首次通过纳米制造的非晶硅超构透镜光学悬浮并旋转一个纳米制造的纳米棒,该超构透镜能以0.953的数值孔径强烈聚焦1550纳米的激光束。通过操纵激光束的偏振,可以调节悬浮纳米棒的平移频率,并且可以开启和关闭自旋旋转模式。然后,我们展示了通过改变激光束的强度、偏振以及气压来控制旋转频率。最后,在实验中实现了纳米棒兆赫兹级的自旋旋转频率。这是在基于超构透镜的紧凑型光学悬浮系统中首次演示可控光学自旋。我们的研究有望实现可扩展的片上集成光学悬浮系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b56/12012181/b3b53767af44/41378_2025_886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验