Suppr超能文献

基于群智能聚类算法的物流配送中心最优选址。

Optimal location of logistics distribution centres with swarm intelligent clustering algorithms.

机构信息

Department of Management, Guangzhou Huashang College, Guangzhou, China.

Institute for Economic and Social Research, Guangzhou Huashang College, Guangzhou, China.

出版信息

PLoS One. 2022 Aug 25;17(8):e0271928. doi: 10.1371/journal.pone.0271928. eCollection 2022.

Abstract

A clustering algorithm is a solution for grouping a set of objects and for distribution centre location problems. But the common K-means clustering algorithm may give local optimal solutions. Swarm intelligent algorithms simulate the social behaviours of animals and avoid local optimal solutions. We employ three swarm intelligent algorithms to avoid these solutions. We propose a new algorithm for the clustering problem, the fruit-fly optimization K-means algorithm (FOA K-means). We designed a distribution centre location problem and three clustering indicators to evaluate the performance of algorithms. We compare the algorithms of K-means with the ant colony optimization algorithm (ACO K-means), particle swarm optimization algorithm (PSO K-means), and fruit-fly optimization algorithm. We find K-Means modified by the fruit-fly optimization algorithm (FOA K-means) has the best performance on convergence speed and three clustering indicators, compactness, separation, and integration. Thus, we can apply FOA K-means to improve the distribution centre location solution and the efficiency for distribution in the future.

摘要

聚类算法是一种用于对一组对象进行分组和分配中心位置问题的解决方案。但是,常见的 K 均值聚类算法可能会给出局部最优解。群体智能算法模拟动物的社会行为,避免局部最优解。我们采用三种群体智能算法来避免这些解决方案。我们提出了一种新的聚类问题算法,即果蝇优化 K 均值算法(FOA K-means)。我们设计了一个分配中心位置问题和三个聚类指标来评估算法的性能。我们将 K-means 算法与蚁群优化算法(ACO K-means)、粒子群优化算法(PSO K-means)和果蝇优化算法进行比较。我们发现,通过果蝇优化算法(FOA K-means)修改的 K-Means 在收敛速度和三个聚类指标紧凑度、分离度和整合度方面具有最佳性能。因此,我们可以应用 FOA K-means 来改进未来的分配中心位置解决方案和分配效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1a/9409525/2129825ed84f/pone.0271928.g001.jpg

相似文献

1
Optimal location of logistics distribution centres with swarm intelligent clustering algorithms.
PLoS One. 2022 Aug 25;17(8):e0271928. doi: 10.1371/journal.pone.0271928. eCollection 2022.
2
Swarm intelligence based clustering technique for automated lesion detection and diagnosis of psoriasis.
Comput Biol Chem. 2020 Jun;86:107247. doi: 10.1016/j.compbiolchem.2020.107247. Epub 2020 May 3.
3
Dynamic Sub-Swarm Approach of PSO Algorithms for Text Document Clustering.
Sensors (Basel). 2022 Dec 9;22(24):9653. doi: 10.3390/s22249653.
5
A solution quality assessment method for swarm intelligence optimization algorithms.
ScientificWorldJournal. 2014;2014:183809. doi: 10.1155/2014/183809. Epub 2014 Jun 11.
6
Improved multi-objective clustering algorithm using particle swarm optimization.
PLoS One. 2017 Dec 5;12(12):e0188815. doi: 10.1371/journal.pone.0188815. eCollection 2017.
7
An improved predator-prey particle swarm optimization algorithm for Nash equilibrium solution.
PLoS One. 2021 Nov 24;16(11):e0260231. doi: 10.1371/journal.pone.0260231. eCollection 2021.
9
Swarm Intelligence Algorithms in Text Document Clustering with Various Benchmarks.
Sensors (Basel). 2021 May 4;21(9):3196. doi: 10.3390/s21093196.
10
Research on Data Analysis of Traditional Chinese Medicine with Improved Differential Evolution Clustering Algorithm.
J Healthc Eng. 2021 Sep 4;2021:4468741. doi: 10.1155/2021/4468741. eCollection 2021.

引用本文的文献

2
Aptenodytes forsteri optimization algorithm for low-carbon logistics network under demand uncertainty.
PLoS One. 2024 Jan 29;19(1):e0297223. doi: 10.1371/journal.pone.0297223. eCollection 2024.

本文引用的文献

2
Genetic K-means algorithm.
IEEE Trans Syst Man Cybern B Cybern. 1999;29(3):433-9. doi: 10.1109/3477.764879.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验