Department of Management, Guangzhou Huashang College, Guangzhou, China.
Institute for Economic and Social Research, Guangzhou Huashang College, Guangzhou, China.
PLoS One. 2022 Aug 25;17(8):e0271928. doi: 10.1371/journal.pone.0271928. eCollection 2022.
A clustering algorithm is a solution for grouping a set of objects and for distribution centre location problems. But the common K-means clustering algorithm may give local optimal solutions. Swarm intelligent algorithms simulate the social behaviours of animals and avoid local optimal solutions. We employ three swarm intelligent algorithms to avoid these solutions. We propose a new algorithm for the clustering problem, the fruit-fly optimization K-means algorithm (FOA K-means). We designed a distribution centre location problem and three clustering indicators to evaluate the performance of algorithms. We compare the algorithms of K-means with the ant colony optimization algorithm (ACO K-means), particle swarm optimization algorithm (PSO K-means), and fruit-fly optimization algorithm. We find K-Means modified by the fruit-fly optimization algorithm (FOA K-means) has the best performance on convergence speed and three clustering indicators, compactness, separation, and integration. Thus, we can apply FOA K-means to improve the distribution centre location solution and the efficiency for distribution in the future.
聚类算法是一种用于对一组对象进行分组和分配中心位置问题的解决方案。但是,常见的 K 均值聚类算法可能会给出局部最优解。群体智能算法模拟动物的社会行为,避免局部最优解。我们采用三种群体智能算法来避免这些解决方案。我们提出了一种新的聚类问题算法,即果蝇优化 K 均值算法(FOA K-means)。我们设计了一个分配中心位置问题和三个聚类指标来评估算法的性能。我们将 K-means 算法与蚁群优化算法(ACO K-means)、粒子群优化算法(PSO K-means)和果蝇优化算法进行比较。我们发现,通过果蝇优化算法(FOA K-means)修改的 K-Means 在收敛速度和三个聚类指标紧凑度、分离度和整合度方面具有最佳性能。因此,我们可以应用 FOA K-means 来改进未来的分配中心位置解决方案和分配效率。