Suppr超能文献

评估 NLHA2 和人工神经网络模型预测 COVID-19 严重程度的能力,并将其与现有的四个评分系统进行比较。

Evaluating the ability of the NLHA2 and artificial neural network models to predict COVID-19 severity, and comparing them with the four existing scoring systems.

机构信息

Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China; Lingang Laboratory, Shanghai, 200031, China.

Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China.

出版信息

Microb Pathog. 2022 Oct;171:105735. doi: 10.1016/j.micpath.2022.105735. Epub 2022 Aug 23.

Abstract

To improve the identification and subsequent intervention of COVID-19 patients at risk for ICU admission, we constructed COVID-19 severity prediction models using logistic regression and artificial neural network (ANN) analysis and compared them with the four existing scoring systems (PSI, CURB-65, SMARTCOP, and MuLBSTA). In this prospective multi-center study, 296 patients with COVID-19 pneumonia were enrolled and split into the General-Ward-Care group (N = 238) and the ICU-Admission group (N = 58). The PSI model (AUC = 0.861) had the best results among the existing four scoring systems, followed by SMARTCOP (AUC = 0.770), motified-MuLBSTA (AUC = 0.761), and CURB-65 (AUC = 0.712). Data from 197 patients (training set) were analyzed for modeling. The beta coefficients from logistic regression were used to develop a severity prediction model and risk score calculator. The final model (NLHA2) included five covariates (consumes alcohol, neutrophil count, lymphocyte count, hemoglobin, and AKP). The NLHA2 model (training: AUC = 0.959; testing: AUC = 0.857) had similar results to the PSI model, but with fewer variable items. ANN analysis was used to build another complex model, which had higher accuracy (training: AUC = 1.000; testing: AUC = 0.907). Discrimination and calibration were further verified through bootstrapping (2000 replicates), Hosmer-Lemeshow goodness of fit testing, and Brier score calculation. In conclusion, the PSI model is the best existing system for predicting ICU admission among COVID-19 patients, while two newly-designed models (NLHA2 and ANN) performed better than PSI, and will provide a new approach for the development of prognostic evaluation system in a novel respiratory viral epidemic.

摘要

为了提高对有入住 ICU 风险的 COVID-19 患者的识别和后续干预,我们使用逻辑回归和人工神经网络 (ANN) 分析构建了 COVID-19 严重程度预测模型,并将其与四个现有的评分系统(PSI、CURB-65、SMARTCOP 和 MuLBSTA)进行了比较。在这项前瞻性多中心研究中,共纳入 296 例 COVID-19 肺炎患者,分为普通病房护理组(N=238)和 ICU 收治组(N=58)。PSI 模型(AUC=0.861)在现有的四个评分系统中表现最佳,其次是 SMARTCOP(AUC=0.770)、改良 MuLBSTA(AUC=0.761)和 CURB-65(AUC=0.712)。对 197 例患者(训练集)的数据进行了建模分析。从逻辑回归的β系数中开发了一种严重程度预测模型和风险评分计算器。最终模型(NLHA2)包含五个协变量(饮酒、中性粒细胞计数、淋巴细胞计数、血红蛋白和 AKP)。NLHA2 模型(训练:AUC=0.959;测试:AUC=0.857)与 PSI 模型结果相似,但变量项目较少。ANN 分析用于构建另一个复杂模型,该模型具有更高的准确性(训练:AUC=1.000;测试:AUC=0.907)。通过 Bootstrap(2000 次重复)、Hosmer-Lemeshow 拟合优度检验和 Brier 评分计算进一步验证了区分度和校准度。总之,PSI 模型是预测 COVID-19 患者 ICU 收治的最佳现有系统,而两个新设计的模型(NLHA2 和 ANN)的表现优于 PSI,将为新型呼吸道病毒流行中的预后评估系统的开发提供新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d5/9395227/5cbd42c07b50/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验