Suppr超能文献

基于 Mxa 和传递函数分析的动态脑自动调节指标的诊断和预后性能。

Diagnostic and prognostic performance of Mxa and transfer function analysis-based dynamic cerebral autoregulation metrics.

机构信息

Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Denmark.

Department of Neurorehabilitation/Traumatic Brain Injury, Copenhagen University Hospital - Rigshospitalet, Denmark.

出版信息

J Cereb Blood Flow Metab. 2022 Nov;42(11):2164-2172. doi: 10.1177/0271678X221121841. Epub 2022 Aug 25.

Abstract

Dynamic cerebral autoregulation is often assessed by continuously recorded arterial blood pressure (ABP) and transcranial Doppler-derived mean cerebral blood flow velocity followed by analysis in the time and frequency domain, respectively. Sequential correlation (in the time domain, yielding e.g., the measure mean flow index, Mxa) and transfer function analysis (TFA) (in the frequency domain, yielding, e.g., normalised and non-normalised gain as well as phase in the low frequency domain) are commonly used approaches. This study investigated the diagnostic and prognostic performance of these metrics. We included recordings from 48 healthy volunteers, 19 patients with sepsis, 36 with traumatic brain injury (TBI), and 14 patients admitted to a neurorehabilitation unit. The diagnostic (between healthy volunteers and patients) and prognostic performance (to predict death or poor functional outcome) of Mxa and the TFA measures were assessed by area under the receiver-operating characteristic (AUROC) curves. AUROC curves generally indicated that the measures were 'no better than chance' (AUROC ∼0.5) both for distinguishing between healthy volunteers and patient groups, and for predicting outcomes in our cohort. No metric emerged as superior for distinguishing between healthy volunteers and different patient groups, for assessing the effect of interventions, or for predicting mortality or functional outcome.

摘要

动态脑自动调节通常通过连续记录动脉血压(ABP)和经颅多普勒衍生的平均脑血流速度来评估,然后分别在时域和频域进行分析。序列相关(在时域中,例如产生平均流量指数 Mxa 的测量)和传递函数分析(TFA)(在频域中,例如归一化和非归一化增益以及低频域中的相位)是常用的方法。本研究探讨了这些指标的诊断和预后性能。我们纳入了 48 名健康志愿者、19 名脓毒症患者、36 名创伤性脑损伤(TBI)患者和 14 名神经康复病房患者的记录。通过接受者操作特征(ROC)曲线下的面积(AUROC)评估 Mxa 和 TFA 测量的诊断(区分健康志愿者和患者)和预后(预测死亡或不良功能结局)性能。AUROC 曲线普遍表明,这些指标在区分健康志愿者和患者组,以及预测我们队列中的结果方面,“不比机会好”(AUROC∼0.5)。没有一种指标在区分健康志愿者和不同患者组、评估干预效果或预测死亡率或功能结局方面表现出优越性。

相似文献

2
Dynamic cerebral autoregulation: should intracranial pressure be taken into account?动态脑自动调节:是否应考虑颅内压?
Acta Neurochir (Wien). 2007 Jun;149(6):549-55; discussion 555. doi: 10.1007/s00701-007-1160-y. Epub 2007 May 3.

本文引用的文献

7
Choosing primary endpoints for clinical trials of health care interventions.选择医疗保健干预措施临床试验的主要终点。
Contemp Clin Trials Commun. 2019 Nov 12;16:100486. doi: 10.1016/j.conctc.2019.100486. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验