Suppr超能文献

健康个体中通过血压和脑血流速度的自发波动测量的动态脑自动调节的可靠性、不对称性及年龄影响。

Reliability, asymmetry, and age influence on dynamic cerebral autoregulation measured by spontaneous fluctuations of blood pressure and cerebral blood flow velocities in healthy individuals.

作者信息

Ortega-Gutierrez Santiago, Petersen Nils, Masurkar Arjun, Reccius Andres, Huang Amy, Li Min, Choi Jae H, Marshall Randolph S

机构信息

From the Department of Neurology, Stroke Division, Columbia University, New York, NY.

出版信息

J Neuroimaging. 2014 Jul-Aug;24(4):379-86. doi: 10.1111/jon.12019. Epub 2013 Apr 22.

Abstract

BACKGROUND

Cerebral autoregulation (CA) enables the brain to maintain stable cerebral blood flow (CBF). CA can be assessed noninvasively by determining correlations between CBF velocity (CBFV) and spontaneous changes in blood pressure. Postrecording signal analysis methods have included both frequency- and time-domain methods. However, the test-retest reliability, cross-validation, and determination of normal values have not been adequately established.

METHODS

In 53 healthy volunteers, a transfer function analysis was applied to calculate phase shift (PS) and gain in the low frequency range (.06-.12 Hz) where CA is most apparent. Correlation analysis was used to derive mean velocity index (Mx). Intraclass correlation and bivariate correlation coefficients were applied to assess asymmetry, cross-validity, and test-retest results: The bihemispheric average PS, gain, and Mx means were 45.99+/-14.24°, .62+/-.38 cm/second/mmHg, and .41+/-.13, respectively. Gain exhibited a difference by age (P = .03). PS, gain, and Mx values showed excellent interhemispheric correlation (r > .8; P < .001). PS and gain showed good reliability (R ICC = .632, L ICC = .576; P < .001). PS and Mx showed fair correlation (r = -.37; P < .001).

CONCLUSIONS

CA parameters obtained by time- and frequency-domain methods correlate well, and show good interhemispheric and test-retest reliability. Group means from healthy controls may provide adequate norms for determining abnormal CA in cerebrovascular patients.

摘要

背景

脑自动调节(CA)使大脑能够维持稳定的脑血流量(CBF)。通过确定脑血流速度(CBFV)与血压自发变化之间的相关性,可以非侵入性地评估CA。记录后信号分析方法包括频域和时域方法。然而,重测信度、交叉验证和正常值的确定尚未得到充分证实。

方法

对53名健康志愿者应用传递函数分析来计算在CA最明显的低频范围(0.06 - 0.12 Hz)的相移(PS)和增益。使用相关分析得出平均速度指数(Mx)。应用组内相关系数和双变量相关系数来评估不对称性、交叉效度和重测结果:双侧半球平均PS、增益和Mx均值分别为45.99±14.24°、0.62±0.38 cm/秒/mmHg和0.41±0.13。增益随年龄存在差异(P = 0.03)。PS、增益和Mx值显示出极好的半球间相关性(r > 0.8;P < 0.001)。PS和增益显示出良好的信度(R ICC = 0.632,L ICC = 0.576;P < 0.001)。PS和Mx显示出中等相关性(r = -0.37;P < 0.001)。

结论

通过时域和频域方法获得的CA参数相关性良好,并显示出良好的半球间和重测信度。健康对照的组均值可为确定脑血管疾病患者的异常CA提供适当的标准。

相似文献

4
Cerebral autoregulation and ageing.
J Clin Neurosci. 2005 Aug;12(6):643-6. doi: 10.1016/j.jocn.2004.08.017.
5
Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
Neurocrit Care. 2017 Dec;27(3):362-369. doi: 10.1007/s12028-017-0421-8.
6
Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy.
J Cereb Blood Flow Metab. 2023 Aug;43(8):1317-1327. doi: 10.1177/0271678X231153728. Epub 2023 Jan 26.
9
Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery.
Anesth Analg. 2013 Jan;116(1):198-204. doi: 10.1213/ANE.0b013e318271fb10. Epub 2012 Dec 7.
10
Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
Acta Neurochir (Wien). 2008 Feb;150(2):139-46; discussion 146-7. doi: 10.1007/s00701-007-1447-z. Epub 2008 Jan 23.

引用本文的文献

3
Myths and methodologies: Assessment of dynamic cerebral autoregulation by the mean flow index.
Exp Physiol. 2024 Apr;109(4):614-623. doi: 10.1113/EP091327. Epub 2024 Feb 20.
4
Diagnostic and prognostic performance of Mxa and transfer function analysis-based dynamic cerebral autoregulation metrics.
J Cereb Blood Flow Metab. 2022 Nov;42(11):2164-2172. doi: 10.1177/0271678X221121841. Epub 2022 Aug 25.
6
Reliability and validity of the mean flow index (Mx) for assessing cerebral autoregulation in humans: A systematic review of the methodology.
J Cereb Blood Flow Metab. 2022 Jan;42(1):27-38. doi: 10.1177/0271678X211052588. Epub 2021 Oct 7.
7
The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke.
J Cereb Blood Flow Metab. 2022 Mar;42(3):411-429. doi: 10.1177/0271678X211029049. Epub 2021 Jul 19.
9
Cerebral critical closing pressure and resistance-area product: the influence of dynamic cerebral autoregulation, age and sex.
J Cereb Blood Flow Metab. 2021 Sep;41(9):2456-2469. doi: 10.1177/0271678X211004131. Epub 2021 Apr 4.
10
Vascular and haemodynamic issues of brain ageing.
Pflugers Arch. 2021 May;473(5):735-751. doi: 10.1007/s00424-020-02508-9. Epub 2021 Jan 13.

本文引用的文献

1
Dynamic cerebral autoregulation after intracerebral hemorrhage: A case-control study.
BMC Neurol. 2011 Aug 31;11:108. doi: 10.1186/1471-2377-11-108.
2
Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury.
Neurocrit Care. 2011 Dec;15(3):379-86. doi: 10.1007/s12028-011-9553-4.
4
Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke.
Acta Neurol Scand. 2012 Mar;125(3):156-62. doi: 10.1111/j.1600-0404.2011.01515.x. Epub 2011 Apr 6.
5
Cerebrovascular regulation during transient hypotension and hypertension in humans.
Hypertension. 2010 Aug;56(2):268-73. doi: 10.1161/HYPERTENSIONAHA.110.152066. Epub 2010 Jun 14.
6
Cerebrovascular reactivity and cerebral autoregulation in normal subjects.
J Neurol Sci. 2009 Oct 15;285(1-2):191-4. doi: 10.1016/j.jns.2009.06.041. Epub 2009 Jul 15.
9
Influence of noninvasive peripheral arterial blood pressure measurements on assessment of dynamic cerebral autoregulation.
J Appl Physiol (1985). 2007 Jul;103(1):369-75. doi: 10.1152/japplphysiol.00271.2007. Epub 2007 Apr 26.
10
Asymmetric dynamic cerebral autoregulatory response to cyclic stimuli.
Stroke. 2007 May;38(5):1465-9. doi: 10.1161/STROKEAHA.106.473462. Epub 2007 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验