Colomeu Talita Cristina, de Figueiredo Daniella, de Matos da Silva Priscila, Fernandes Luís Gustavo Romani, Zollner Ricardo de Lima
Laboratory of Translational Immunology, Department of Internal Medicine, School of Medical Sciences, University of Campinas-Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas 13083-887, SP, Brazil.
Antioxidants (Basel). 2022 Jul 30;11(8):1503. doi: 10.3390/antiox11081503.
The antioxidant, anti-inflammatory and antiproliferative properties of Passiflora alata Curtis are due to the presence of polyphenols in its composition. Our previous work showed that non-obese diabetic (NOD) mice undergoing treatment with aqueous leaf extract of P. alata present reduced insulitis in the pancreas, possibly due to its anti-inflammatory properties. However, depending on the concentration and their ability to interact with other molecules, these phenolic compounds may promote oxidation reactions in some cellular components, such as proteins and lipids, thus presenting a pro-oxidant effect. The present work aimed to evaluate the in vitro effects of aqueous leaf extract of P. alata and its polyphenols (vitexin, isoorientin, rutin and catechin) on lymphocyte proliferation and viability, the cell cycle and oxidative stress. Our results showed that T lymphocytes stimulated with concanavalin A mitogen (ConA) and in the presence of IC50 concentrations of P. alata extract and polyphenols undergo cell injury via inhibition of proliferation, with these effects being more pronounced concerning CD4+ T cells (P. alata, 3.54 ± 0.34%; isoorientin, 57.07 ± 6.4%; vitexin, 16.95 ± 1.11%; catechin, 37.9 ± 4.2% and rutin, 40.14 ± 4.5%), compared to the non-treated group (77.17 ± 6.29) (p < 0.0001 for all comparisons). This process includes late apoptosis/necrosis induction (P. alata, 77.5 ± 0.7%; vitexin, 83 ± 3.3%; isoorientin, 83.8 ± 1.4%; catechin, 83 ± 1.9% and rutin, 74.9 ± 3.2, while the control presented 53.6% ± 3.1 (p < 0.0001 for all comparisons)) and mitochondrial depolarization leading to cell-death induction. Furthermore, an in vitro model of a mixed culture of NOD mice T cells with a mouse pancreatic beta-cell line (MIN6) showed increased intracellular nitric oxide and lipid peroxidation in NOD T cells submitted to P. alata extract (46.41 ± 3.08) compared to the untreated control group (33.57 ± 1.99, p = 0.01315). These results suggest that aqueous leaf extract of P. alata and the polyphenols in these leaves represent a target for translational research showing the plant’s benefits for developing new drugs with immunomodulatory properties against inflammatory diseases such as diabetes mellitus.
翅茎西番莲的抗氧化、抗炎和抗增殖特性归因于其成分中存在的多酚。我们之前的研究表明,用翅茎西番莲叶水提取物治疗的非肥胖糖尿病(NOD)小鼠胰腺中的胰岛炎减轻,这可能归因于其抗炎特性。然而,取决于浓度及其与其他分子相互作用的能力,这些酚类化合物可能会在某些细胞成分(如蛋白质和脂质)中促进氧化反应,从而呈现促氧化作用。本研究旨在评估翅茎西番莲叶水提取物及其多酚(牡荆素、异荭草素、芦丁和儿茶素)对淋巴细胞增殖、活力、细胞周期和氧化应激的体外影响。我们的结果表明,用刀豆球蛋白A有丝分裂原(ConA)刺激的T淋巴细胞,在存在IC50浓度的翅茎西番莲提取物和多酚的情况下,通过抑制增殖而遭受细胞损伤,这些作用在CD4+T细胞中更为明显(翅茎西番莲,3.54±0.34%;异荭草素,57.07±6.4%;牡荆素,16.95±1.11%;儿茶素,37.9±4.2%和芦丁,40.14±4.5%),与未处理组(77.17±6.29)相比(所有比较p<0.0001)。这个过程包括晚期凋亡/坏死诱导(翅茎西番莲,77.5±0.7%;牡荆素,83±3.3%;异荭草素,83.8±1.4%;儿茶素,83±1.9%和芦丁,74.9±3.2%,而对照组为53.6%±3.1%(所有比较p<0.0001))以及线粒体去极化导致细胞死亡诱导。此外,NOD小鼠T细胞与小鼠胰腺β细胞系(MIN6)混合培养的体外模型显示,与未处理的对照组(33.57±1.99,p = 0.01315)相比,接受翅茎西番莲提取物处理的NOD T细胞中细胞内一氧化氮和脂质过氧化增加。这些结果表明,翅茎西番莲叶水提取物及其叶片中的多酚是转化研究的一个靶点,显示了该植物在开发具有免疫调节特性的新药以对抗糖尿病等炎症性疾病方面的益处。