Suppr超能文献

冠状动脉计算机断层扫描血管造影(CCTA)图像分割在检测动脉粥样硬化中的可重复性和可再现性:一项放射组学研究

Reproducibility and Repeatability of Coronary Computed Tomography Angiography (CCTA) Image Segmentation in Detecting Atherosclerosis: A Radiomics Study.

作者信息

Yunus Mardhiyati Mohd, Sabarudin Akmal, Karim Muhammad Khalis Abdul, Nohuddin Puteri N E, Zainal Isa Azzaki, Shamsul Mohd Shahril Mohd, Yusof Ahmad Khairuddin Mohamed

机构信息

Programme of Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia.

Programme of Medical Imaging, Faculty of Health Sciences, Universiti Selangor (UNISEL), Batang Berjuntai 40000, Selangor, Malaysia.

出版信息

Diagnostics (Basel). 2022 Aug 19;12(8):2007. doi: 10.3390/diagnostics12082007.

Abstract

Atherosclerosis is known as the leading factor in heart disease with the highest mortality rate among the Malaysian population. Usually, the gold standard for diagnosing atherosclerosis is by using the coronary computed tomography angiography (CCTA) technique to look for plaque within the coronary artery. However, qualitative diagnosis for noncalcified atherosclerosis is vulnerable to false-positive diagnoses, as well as inconsistent reporting between observers. In this study, we assess the reproducibility and repeatability of segmenting atherosclerotic lesions manually and semiautomatically in CCTA images to identify the most appropriate CCTA image segmentation method for radiomics analysis to quantitatively extract the atherosclerotic lesion. Thirty (30) CCTA images were taken retrospectively from the radiology image database of Hospital Canselor Tuanku Muhriz (HCTM), Kuala Lumpur, Malaysia. We extract 11,700 radiomics features which include the first-order, second-order and shape features from 180 times of image segmentation. The interest vessels were segmentized manually and semiautomatically using LIFEx (Version 7.0.15, Institut Curie, Orsay, France) software by two independent radiology experts, focusing on three main coronary blood vessels. As a result, manual segmentation with a soft-tissuewindowing setting yielded higher repeatability as compared to semiautomatic segmentation with a significant intraclass correlation coefficient (intra-CC) 0.961 for thefirst-order and shape features; intra-CC of 0.924 for thesecond-order features with p < 0.001. Meanwhile, the semiautomatic segmentation has higher reproducibility as compared to manual segmentation with significant interclass correlation coefficient (inter-CC) of 0.920 (first-order features) and a good interclass correlation coefficient of 0.839 for the second-order features with p < 0.001. The first-order, shape order and second-order features for both manual and semiautomatic segmentation have an excellent percentage of reproducibility and repeatability (intra-CC > 0.9). In conclusion, semi-automated segmentation is recommended for inter-observer study while manual segmentation with soft tissue-windowing can be used for single observer study.

摘要

动脉粥样硬化被认为是心脏病的主要因素,在马来西亚人群中死亡率最高。通常,诊断动脉粥样硬化的金标准是使用冠状动脉计算机断层扫描血管造影(CCTA)技术来寻找冠状动脉内的斑块。然而,非钙化动脉粥样硬化的定性诊断容易出现假阳性诊断,并且观察者之间的报告也不一致。在本研究中,我们评估了在CCTA图像中手动和半自动分割动脉粥样硬化病变的可重复性和重复性,以确定用于放射组学分析以定量提取动脉粥样硬化病变的最合适的CCTA图像分割方法。从马来西亚吉隆坡的敦库·穆赫里兹医院(HCTM)的放射学图像数据库中回顾性地获取了30张CCTA图像。我们从180次图像分割中提取了11,700个放射组学特征,包括一阶、二阶和形状特征。两名独立的放射学专家使用LIFEx(版本7.0.15,法国奥赛居里研究所)软件手动和半自动分割感兴趣的血管,重点关注三条主要冠状动脉。结果,与半自动分割相比,采用软组织窗设置的手动分割具有更高的重复性,一阶和形状特征的类内相关系数(intra-CC)为0.961;二阶特征的intra-CC为0.924,p<0.001。同时,与手动分割相比,半自动分割具有更高的可重复性,一阶特征的类间相关系数(inter-CC)为0.920,二阶特征的类间相关系数良好,为0.839,p<0.001。手动和半自动分割的一阶、形状阶和二阶特征均具有出色的可重复性和重复性百分比(intra-CC>0.9)。总之,半自动分割推荐用于观察者间研究,而采用软组织窗的手动分割可用于单观察者研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e8/9406887/e9f3b33f6cc1/diagnostics-12-02007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验