Suppr超能文献

ICOSeg:使用轻量级卷积变压器网络从免疫组织化学切片中进行ICOS蛋白表达的实时分割

ICOSeg: Real-Time ICOS Protein Expression Segmentation from Immunohistochemistry Slides Using a Lightweight Conv-Transformer Network.

作者信息

Singh Vivek Kumar, Sarker Md Mostafa Kamal, Makhlouf Yasmine, Craig Stephanie G, Humphries Matthew P, Loughrey Maurice B, James Jacqueline A, Salto-Tellez Manuel, O'Reilly Paul, Maxwell Perry

机构信息

Precision Medicine Centre of Excellence, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK.

National Subsea Centre, Robert Gordon University, Aberdeen AB21 0BH, UK.

出版信息

Cancers (Basel). 2022 Aug 13;14(16):3910. doi: 10.3390/cancers14163910.

Abstract

In this article, we propose ICOSeg, a lightweight deep learning model that accurately segments the immune-checkpoint biomarker, Inducible T-cell COStimulator (ICOS) protein in colon cancer from immunohistochemistry (IHC) slide patches. The proposed model relies on the MobileViT network that includes two main components: convolutional neural network (CNN) layers for extracting spatial features; and a transformer block for capturing a global feature representation from IHC patch images. The ICOSeg uses an encoder and decoder sub-network. The encoder extracts the positive cell's salient features (i.e., shape, texture, intensity, and margin), and the decoder reconstructs important features into segmentation maps. To improve the model generalization capabilities, we adopted a channel attention mechanism that added to the bottleneck of the encoder layer. This approach highlighted the most relevant cell structures by discriminating between the targeted cell and background tissues. We performed extensive experiments on our in-house dataset. The experimental results confirm that the proposed model achieves more significant results against state-of-the-art methods, together with an 8× reduction in parameters.

摘要

在本文中,我们提出了ICOSeg,这是一种轻量级深度学习模型,可从免疫组织化学(IHC)玻片补丁中准确分割结肠癌中的免疫检查点生物标志物——诱导性T细胞共刺激分子(ICOS)蛋白。所提出的模型依赖于MobileViT网络,该网络包括两个主要组件:用于提取空间特征的卷积神经网络(CNN)层;以及用于从IHC补丁图像中捕获全局特征表示的Transformer块。ICOSeg使用编码器和解码器子网络。编码器提取阳性细胞的显著特征(即形状、纹理、强度和边缘),解码器将重要特征重建成分割图。为了提高模型的泛化能力,我们采用了一种通道注意力机制,并将其添加到编码器层的瓶颈处。这种方法通过区分目标细胞和背景组织,突出了最相关的细胞结构。我们在内部数据集上进行了广泛的实验。实验结果证实,与现有方法相比,所提出的模型取得了更显著的结果,同时参数减少了8倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70b2/9406218/61bdc38dd9bb/cancers-14-03910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验