Instituto Nacional de Geriatría, Dirección de Investigación, Av. Contreras 428, Ciudad de México 10200, Mexico.
Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus NorteFCS, Huixquilucan 52786, Mexico.
Int J Environ Res Public Health. 2022 Aug 18;19(16):10239. doi: 10.3390/ijerph191610239.
Early detriment in the muscle mass quantity, quality, and functionality, determined by calf circumference (CC), phase angle (PA), gait time (GT), and grip strength (GSt), may be considered a risk factor for sarcopenia. Patterns derived from these parameters could timely identify an early stage of this disease. Thus, the present work aims to identify those patterns of muscle-related parameters and their association with sarcopenia in a cohort of older Mexican women with neural network analysis. Methods: Information from the functional decline patterns at the end of life, related factors, and associated costs study was used. A self-organizing map was used to analyze the information. A SOM is an unsupervised machine learning technique that projects input variables on a low-dimensional hexagonal grid that can be effectively utilized to visualize and explore properties of the data allowing to cluster individuals with similar age, GT, GSt, CC, and PA. An unadjusted logistic regression model assessed the probability of having sarcopenia given a particular cluster. Results: 250 women were evaluated. Mean age was 68.54 ± 5.99, sarcopenia was present in 31 (12.4%). Clusters 1 and 2 had similar GT, GSt, and CC values. Moreover, in cluster 1, women were older with higher PA values (p < 0.001). From cluster 3 upward, there is a trend of worse scores for every variable. Moreover, 100% of the participants in cluster 6 have sarcopenia (p < 0.001). Women in clusters 4 and 5 were 19.29 and 90 respectively, times more likely to develop sarcopenia than those from cluster 2 (p < 0.01). Conclusions: The joint use of age, GSt, GT, CC, and PA is strongly associated with the probability women have of presenting sarcopenia.
肌肉质量、数量和功能的早期损害,通过小腿围(CC)、相位角(PA)、步态时间(GT)和握力(GSt)来确定,可能被认为是肌肉减少症的一个风险因素。这些参数得出的模式可以及时识别这种疾病的早期阶段。因此,本研究旨在通过神经网络分析,确定一组墨西哥老年女性中与肌肉相关的参数模式及其与肌肉减少症的关联。
使用生命终末期功能下降模式、相关因素和相关成本研究的信息。使用自组织映射来分析信息。SOM 是一种无监督的机器学习技术,它将输入变量投影到一个低维六边形网格上,可以有效地用于可视化和探索数据的属性,允许将具有相似年龄、GT、GSt、CC 和 PA 的个体进行聚类。使用未调整的逻辑回归模型评估了特定聚类下存在肌肉减少症的概率。
评估了 250 名女性。平均年龄为 68.54 ± 5.99 岁,31 人(12.4%)存在肌肉减少症。聚类 1 和 2 具有相似的 GT、GSt 和 CC 值。此外,在聚类 1 中,女性年龄较大,PA 值较高(p < 0.001)。从聚类 3 开始,每个变量的得分都呈下降趋势。此外,聚类 6 中的 100%的参与者都患有肌肉减少症(p < 0.001)。与聚类 2 相比,聚类 4 和 5 的女性患肌肉减少症的可能性分别增加了 19.29 倍和 90 倍(p < 0.01)。
年龄、GSt、GT、CC 和 PA 的联合使用与女性出现肌肉减少症的概率密切相关。