Suppr超能文献

高危肥胖表型:ROFEMI研究中多重疾病预防的靶点。

High-Risk Obesity Phenotypes: Target for Multimorbidity Prevention at the ROFEMI Study.

作者信息

Carretero-Gómez Juana, Pérez-Martínez Pablo, Seguí-Ripoll José Miguel, Carrasco-Sánchez Francisco Javier, Lois Martínez Nagore, Fernández Pérez Esther, Pérez Hernández Onán, García Ordoñez Miguel Ángel, Martín González Candelaria, Vigueras-Pérez Juan Francisco, Puchades Francesc, Blasco Avaria María Cristina, Pérez Soto María Isabel, Ena Javier, Arévalo-Lorido José Carlos

机构信息

Internal Medicine Department, University Hospital of Badajoz, 06085 Badajoz, Spain.

Internal Medicine Department, IMIBIC/Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain.

出版信息

J Clin Med. 2022 Aug 9;11(16):4644. doi: 10.3390/jcm11164644.

Abstract

Background: Describe the profile of patients with obesity in internal medicine to determine the role of adiposity and related inflammation on the metabolic risk profile and, identify various “high-risk obesity” phenotypes by means of a cluster analysis. This study aimed to identify different profiles of patients with high-risk obesity based on a cluster analysis. Methods: Cross-sectional, multicenter project that included outpatients attended to in internal medicine. A total of 536 patients were studied. The mean age was 62 years, 51% were women. Patients were recruited from internal medicine departments over two weeks in November and December 2021 and classified into four risk groups according to body mass index (BMI) and waist circumference (WC). High-risk obesity was defined as BMI > 35 Kg/m2 or BMI 30−34.9 Kg/m2 and a high WC (>102 cm for men and >88 cm for women). Hierarchical and partitioning clustering approaches were performed to identify profiles. Results: A total of 462 (86%) subjects were classified into the high-risk obesity group. After excluding 19 patients missing critical data, two profiles emerged: cluster 1 (n = 396) and cluster 2 (n = 47). Compared to cluster 1, cluster 2 had a worse profile, characterized by older age (77 ± 16 vs. 61 ± 21 years, p < 0.01), a Charlson Comorbidity Index > 3 (53% vs. 5%, p < 0.001), depression (36% vs. 19%, p = 0.008), severe disability (64% vs. 3%, p < 0.001), and a sarcopenia score ≥ 4 (79% vs. 16%, p < 0.01). In addition, cluster 2 had greater inflammation than cluster 1 (hsCRP: 5.8 ± 4.1 vs. 2.1 ± 4.5 mg/dL, p = 0.008). Conclusions: Two profiles of subjects with high-risk obesity were identified. Based on that, older subjects with obesity require measures that target sarcopenia, disability, psychological health, and significant comorbidities to prevent further health deterioration. Longitudinal studies should be performed to identify potential risk factors of subjects who progress from cluster 1 to cluster 2.

摘要

背景

描述内科肥胖患者的特征,以确定肥胖及相关炎症在代谢风险谱中的作用,并通过聚类分析识别各种“高危肥胖”表型。本研究旨在基于聚类分析识别高危肥胖患者的不同特征。方法:一项横断面、多中心项目,纳入内科门诊患者。共研究了536例患者。平均年龄为62岁,51%为女性。2021年11月和12月的两周内从内科招募患者,并根据体重指数(BMI)和腰围(WC)分为四个风险组。高危肥胖定义为BMI>35 Kg/m²或BMI为30 - 34.9 Kg/m²且WC较高(男性>102 cm,女性>88 cm)。采用层次聚类和划分聚类方法来识别特征。结果:共有462例(86%)受试者被归入高危肥胖组。在排除19例缺失关键数据的患者后,出现了两种特征:聚类1(n = 396)和聚类2(n = 47)。与聚类1相比,聚类2具有更差的特征,表现为年龄较大(77±16岁对61±21岁,p < 0.01)、Charlson合并症指数>3(53%对5%,p < 0.001)、抑郁症(36%对19%,p = 0.008)、严重残疾(64%对3%,p < 0.001)以及肌肉减少症评分≥4(79%对16%,p < 0.01)。此外,聚类2的炎症反应比聚类1更严重(高敏C反应蛋白:5.8±4.1对2.1±4.5 mg/dL,p = 0.008)。结论:识别出了高危肥胖受试者的两种特征。基于此,老年肥胖受试者需要采取针对肌肉减少症、残疾、心理健康和严重合并症的措施,以防止健康状况进一步恶化。应进行纵向研究,以识别从聚类1进展到聚类2的受试者的潜在风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9931/9410284/2c544ed6ed09/jcm-11-04644-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验