Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
Medicina (Kaunas). 2022 Aug 19;58(8):1124. doi: 10.3390/medicina58081124.
: The histopathological and clinical conditions for transforming peri-implant mucositis into peri-implantitis (PI) are not fully clarified. We aim to uncover molecular mechanisms and new potential biomarkers of PI. : Raw GSE33774 and GSE57631 datasets were obtained from the Gene Expression Omnibus (GEO) database. The linear models for microarray data (LIMMA) package in R software completes differentially expressed genes (DEGs). We conducted a weighted gene co-expression network analysis (WGCNA) on the top 25% of altered genes and identified the key modules associated with the clinical features of PI. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the R software. We constructed a protein-protein interaction (PPI) network through the STRING database. After that we used Cytohubba plug-ins of Cytoscape to screen out the potential hub genes, which were subsequently verified via receiver operating characteristic (ROC) curves in another dataset, GSE178351, and revalidation of genes through the DisGeNET database. : We discovered 632 DEGs (570 upregulated genes and 62 downregulated genes). A total of eight modules were screened by WGCNA, among which the turquoise module was most correlated with PI. The Cytohubba plug-ins were used for filtering hub genes, which are highly linked with PI development, from the candidate genes in the protein-protein interaction (PPI) network. : We found five key genes from PI using WGCNA. Among them, ICAM1, CXCL1, and JUN are worthy of further study of new target genes, providing the theoretical basis for further exploration of the occurrence and development mechanism of PI.
: 尚未完全阐明将种植体周围黏膜炎转化为种植体周围炎(PI)的组织病理学和临床条件。我们旨在揭示 PI 的分子机制和新的潜在生物标志物。 : 从基因表达综合数据库(GEO)中获取了原始 GSE33774 和 GSE57631 数据集。R 软件中的线性模型微阵列数据(LIMMA)包完成了差异表达基因(DEGs)。我们对前 25%改变的基因进行了加权基因共表达网络分析(WGCNA),并鉴定了与 PI 临床特征相关的关键模块。使用 R 软件进行基因本体论(GO)富集和京都基因与基因组百科全书(KEGG)途径分析。我们通过 STRING 数据库构建了蛋白质-蛋白质相互作用(PPI)网络。之后,我们使用 Cytoscape 的 Cytohubba 插件筛选出潜在的枢纽基因,然后在另一个数据集 GSE178351 中通过接收者操作特征(ROC)曲线进行验证,并通过 DisGeNET 数据库对基因进行重新验证。 : 我们发现了 632 个 DEGs(570 个上调基因和 62 个下调基因)。通过 WGCNA 共筛选出 8 个模块,其中翠鸟模块与 PI 相关性最高。使用 Cytohubba 插件从蛋白质-蛋白质相互作用(PPI)网络中的候选基因中筛选出与 PI 发展高度相关的枢纽基因。 : 通过 WGCNA,我们从 PI 中找到了五个关键基因。其中,ICAM1、CXCL1 和 JUN 是值得进一步研究的新靶基因,为进一步探索 PI 的发生和发展机制提供了理论基础。
Medicina (Kaunas). 2022-8-19
Pharmgenomics Pers Med. 2021-4-13
Evid Based Complement Alternat Med. 2022-12-31
Clin Oral Implants Res. 2021-3
Clin Oral Investig. 2021-3
Clin Oral Implants Res. 2020-1-13